All three of those CAN .
You can prove that to triangles are congruent with SSS, then use CPCTC to prove that two corresponding angles of those triangles are congruent.
Nothing. If a side ,an angle, and a side are the same the triangles are congruent.
prove any two adjacent triangles as congruent
LEGS
You could prove two triangles are congruent by measuring each side of both triangles, and all three angles of each triangle. If the lengths of the sides are the same, and so are the angles, then the triangles are congruent... if not, then the triangles are not congruent. If the triangles have the exact same size and shape then they are congruent.
All three of those CAN .
You can prove that to triangles are congruent with SSS, then use CPCTC to prove that two corresponding angles of those triangles are congruent.
You can't use AAA to prove two triangles congruent because triangles can have the same measures of all its angles but be bigger or smaller, AAA could probably be used to prove two triangles are similar not congruent.
congruent
If triangles have the corresponding sides congruent then they are congruent. SSS If two triangles have two sides and an included angle congruent then they are congruent. SAS If two triangles have two angles and an included side congruent then they are congruent. ASA SSA doesn't work.
you measure all the sides
Nothing. If a side ,an angle, and a side are the same the triangles are congruent.
The SAS theorem is used to prove that two triangles are congruent. If the triangles have a side-angle-side that are congruent (it must be in that order), then the two triangles can be proved congruent. Using this theorem can in the future help prove corresponding parts are congruent among other things.
The colours of their sides.
prove any two adjacent triangles as congruent
Two triangles with three congruent angles may have different side lengths.