answersLogoWhite

0

The answer depends on what is known about the two triangles.

The answer depends on what is known about the two triangles.

The answer depends on what is known about the two triangles.

The answer depends on what is known about the two triangles.

User Avatar

Wiki User

12y ago

What else can I help you with?

Related Questions

The LL theorem states that for right triangles two congruent what are sufficient to prove congruence of the triangles?

LEGS


The LL theorem states that for two triangles two congruent legs are sufficient to prove congruence of the triangles?

You left out one very important detail . . . the statement is true for a RIGHT triangle.


What postulate or theorem verifies the congruence of triangles?

sssThere are five methods for proving the congruence of triangles. In SSS, you prove that all three sides of two triangles are congruent to each other. In SAS, if two sides of the triangles and the angle between them are congruent, then the triangles are congruent. In ASA, if two angles of the triangles and the side between them are congruent, then the triangles are congruent. In AAS, if two angles and one of the non-included sides of two triangles are congruent, then the triangles are congruent. In HL, which only applies to right triangles, if the hypotenuse and one leg of the two triangles are congruent, then the triangles are congruent.


Is it possible to prove one pair of triangles congruent and then use their congruent corresponding parts to prove another pair congruent?

If I understand the question correctly, the answer is yes. Thanks to the transitive property of congruence.


Which additional congruence statement could you use to prove that mc110-2.jpgby HL?

To prove triangles are congruent by the Hypotenuse-Leg (HL) theorem, you need to establish that both triangles have a right angle, and that the hypotenuse and one leg of one triangle are congruent to the hypotenuse and one leg of the other triangle, respectively. An additional congruence statement that could be used is that the lengths of the hypotenuses of both triangles are equal, along with confirming that one leg in each triangle is also equal in length. This information is sufficient to apply the HL theorem for congruence.


What other information do you need in order to prove the triangles congruent using the SAS Congruence Postulate?

To prove triangles congruent using the SAS (Side-Angle-Side) Congruence Postulate, you need to know the lengths of two sides of one triangle and the included angle between those sides, as well as the corresponding lengths of the two sides and the included angle of the other triangle. Specifically, you would need to confirm that the two pairs of sides are equal in length and that the angle between those sides in both triangles is congruent. With this information, you can establish the congruence of the triangles.


How do you make a flowchart for congruent or similar triangles?

Here guys Thanks :D Congruent triangles are similar figures with a ratio of similarity of 1, that is 1 1 . One way to prove triangles congruent is to prove they are similar first, and then prove that the ratio of similarity is 1. In these sections of the text the students find short cuts that enable them to prove triangles congruent in fewer steps, by developing five triangle congruence conjectures. They are SSS! , ASA! , AAS! , SAS! , and HL ! , illustrated below.


Is this statement true or falseThere is enough information to prove the triangles congruent using HL?

true


How would you prove triangles are congruent?

You could prove two triangles are congruent by measuring each side of both triangles, and all three angles of each triangle. If the lengths of the sides are the same, and so are the angles, then the triangles are congruent... if not, then the triangles are not congruent. If the triangles have the exact same size and shape then they are congruent.


What is the definition of AAS Congruence postulate of trianges?

It is a theorem, not a postulate, since it is possible to prove it. If two angles and a side of one triangle are congruent to the corresponding angles and side of another triangle then the two triangles are congruent.


which property can you use to prove that ME is congruent to itself?

reflexive property of congruence


How can you use SSS with CPCTC?

You can prove that to triangles are congruent with SSS, then use CPCTC to prove that two corresponding angles of those triangles are congruent.