Yes, all triangles can be tessellated. To tessellate any triangle, take six instances of the triangle and arrange them such that they form a hexagon. This will be a repeatable pattern so being a tessellation
Some can, but not all. For example, rhombi, rhomboids, oblongs, and isosceles triangles can tessellate; however, most irregular polygons cannot. * * * * * True, but an incomplete answer. All triangles and quadrilaterals, whether regular or irregular, will tessellate. No regular pentagon will tessellate but (as of 2016), there are 15 irregular pentagons which will tessellate. There are 3 convex hexagons, (regular and 2 irregular) which will tessellate. No polygon with 7 or more sides, even if it is regular, will tessellate.
Shapes tessellate to fit around an interior angle. They also tessellate because they are regular polygons; non-regular polygons cannot tessellate. * * * * * Not correct. All triangles and quadrilaterals will tessellate, whether regular or irregular. Contrary to the above answer, a regular pentagon will not tessellate but there are 14 different irregular pentagons which will tessellate (the last was discovered in 2015). Three convex hexagons will do so as well. No polygon of 7 or more sides will tessellate - whether they are regular (contrary to the above answer) or irregular.
No, there would be triangles in between. Sorry!
No not all shapes tessellate.
Yes all triangles will tessellate
All triangles tessellate.
All triangles can tessellate.
equilateral and isoceles triangles, squares, rectangles and hexagons. equilateral and isoceles triangles, squares, rectangles and hexagons. * * * * * ALL triangle and ALL quadrilaterals will tessellate. There are 15 pentagons as well as 3 convex hexagons which will tessellate. No polygon with 7 or more sides will tessellate.
Yes because all triangles will tessellate
Yes.
Yes, all triangles can be tessellated. To tessellate any triangle, take six instances of the triangle and arrange them such that they form a hexagon. This will be a repeatable pattern so being a tessellation
Some can, but not all. For example, rhombi, rhomboids, oblongs, and isosceles triangles can tessellate; however, most irregular polygons cannot. * * * * * True, but an incomplete answer. All triangles and quadrilaterals, whether regular or irregular, will tessellate. No regular pentagon will tessellate but (as of 2016), there are 15 irregular pentagons which will tessellate. There are 3 convex hexagons, (regular and 2 irregular) which will tessellate. No polygon with 7 or more sides, even if it is regular, will tessellate.
Triangles, squares, hexagons, and octagons all tessellate
All triangles will tessellate. All quadrilaterals will tessellate There are 15 classes of convex pentagons (the latest discovered in 2015) which will tessellate. Regular hexagons will tessellate. In addition, there are 3 classes of irregular convex hexagons which will tessellate. No convex polygon with 7 or more sides will tessellate.
All triangles will tessellate. All quadrilaterals will tessellate There are 15 classes of convex pentagons (the latest discovered in 2015) which will tessellate. Regular hexagons will tessellate. In addition, there are 3 classes of irregular convex hexagons which will tessellate. No convex polygon with 7 or more sides will tessellate.
All triangles will tessellate. All quadrilaterals will tessellate There are 15 classes of convex pentagons (the latest discovered in 2015) which will tessellate. Regular hexagons will tessellate. In addition, there are 3 classes of irregular convex hexagons which will tessellate. No convex polygon with 7 or more sides will tessellate.