in a book
No. He invented calculus. He did, however, study geometry.
Euclidean geometry, non euclidean geometry. Plane geometry. Three dimensional geometry to name but a few
There are different kinds of geometry including elementary geometry, Euclidean geometry, and Elliptic Geometry.
Archimedes - Euclidean geometry Pierre Ossian Bonnet - differential geometry Brahmagupta - Euclidean geometry, cyclic quadrilaterals Raoul Bricard - descriptive geometry Henri Brocard - Brocard points.. Giovanni Ceva - Euclidean geometry Shiing-Shen Chern - differential geometry René Descartes - invented the methodology analytic geometry Joseph Diaz Gergonne - projective geometry; Gergonne point Girard Desargues - projective geometry; Desargues' theorem Eratosthenes - Euclidean geometry Euclid - Elements, Euclidean geometry Leonhard Euler - Euler's Law Katyayana - Euclidean geometry Nikolai Ivanovich Lobachevsky - non-Euclidean geometry Omar Khayyam - algebraic geometry, conic sections Blaise Pascal - projective geometry Pappus of Alexandria - Euclidean geometry, projective geometry Pythagoras - Euclidean geometry Bernhard Riemann - non-Euclidean geometry Giovanni Gerolamo Saccheri - non-Euclidean geometry Oswald Veblen - projective geometry, differential geometry
in a book
No. He invented calculus. He did, however, study geometry.
No, they invented geometry.
Euclid was Greek but carried out much of his work in Alexandria in Egypt.
Descartes did not invent any main coordinates, but he did invent the cartesian plane. Being one of the most important aspects in coordinate geometry it is used up to this day.
he was a German mathematician and scientist who contributed to many fields, number theory, analysis, statistics, geometry, electrostatics, astronomy and optics
John Wallis (1616-1703) made significant contributions to Trigonometry, calculus and geometry and was chief Cryptographer to Parliament
No Isaac Newton did not invent the branch of geometry. Isaac Newton actually invented modern calculus in the 17th century.
Euclidean geometry has become closely connected with computational geometry, computer graphics, convex geometry, and some area of combinatorics. Topology and geometry The field of topology, which saw massive developement in the 20th century is a technical sense of transformation geometry. Geometry is used on many other fields of science, like Algebraic geometry. Types, methodologies, and terminologies of geometry: Absolute geometry Affine geometry Algebraic geometry Analytic geometry Archimedes' use of infinitesimals Birational geometry Complex geometry Combinatorial geometry Computational geometry Conformal geometry Constructive solid geometry Contact geometry Convex geometry Descriptive geometry Differential geometry Digital geometry Discrete geometry Distance geometry Elliptic geometry Enumerative geometry Epipolar geometry Euclidean geometry Finite geometry Geometry of numbers Hyperbolic geometry Information geometry Integral geometry Inversive geometry Inversive ring geometry Klein geometry Lie sphere geometry Non-Euclidean geometry Numerical geometry Ordered geometry Parabolic geometry Plane geometry Projective geometry Quantum geometry Riemannian geometry Ruppeiner geometry Spherical geometry Symplectic geometry Synthetic geometry Systolic geometry Taxicab geometry Toric geometry Transformation geometry Tropical geometry
The invention of algebra traces back to the ancient Babylonians. At the time, Egyptian, Greek, and Chinese mathematicians actually used geometry to solve math problems.
* geometry in nature * for practcal use of geometry * geometry as a theory * historic practical use of geometry
Euclidean geometry, non euclidean geometry. Plane geometry. Three dimensional geometry to name but a few