No.
No, a vector cannot have zero magnitude if one of its components is not zero. The magnitude of a vector is determined by the combination of all its components, so if any component is not zero, the vector will have a non-zero magnitude.
If any component of a vector is not zero, then the vector is not zero.
Yes, if it has a non-zero component along some other line - usually, but not necessarily orthogonal.
No, for a vector to be zero, all of its components must be zero. If only one component is not zero, then the vector itself cannot be zero.
Yes. A vector in two dimensions is broken into two components, a vector in three dimensions broken into three components, etc... If the value of all but one component of a vector equal zero then the magnitude of the vector is equal to the non-zero component.
When the direction of the vector is vertical. Gravitational force has zero horizontal component.
No. The magnitude of a vector can't be less than any component.
No never
No.
No.
Huh?I have been kicking around your question in my mind for five minutes trying to figure out an answer or a way to edit your question into an unambiguous form, but I'm stumped. I don't know what you mean by "zero component along a line."If you look at the representation of a vector on paper using a Cartesian coordinate system -- in other words, one using x and y axes -- the orthogonal components of the vector are the projections of the vector on the x and y axes. If the vector is parallel to one of the axes, its projection on the other axis will be zero. But the vector will still have a non-zero magnitude. Its entire magnitude will project on only one axis.But a vector must have magnitude AND direction. And if it has zero magnitude, its direction cannot be determined.Still trying to make heads or tails out of your question.......If you draw a random vector on a Cartesian grid, it will have an x component and a y component, which are both projections of the original vector upon the axes. However, it could also be represented by projecting it onto a new set of orthogonal axes -- call them x' and y' -- where the x' axis is oriented to be parallel to the original vector and the y' vector is perpendicular to it. In that case, the x' component will have a magnitude equal to the magnitude of the original vector -- in other words, a non-zero value along a line parallel to the x' axis -- and a zero magnitude in the y' direction.