Friction affects most every thing. In a mechanical metronome you would not need a power source if there were no friction.
Height does not affect the period of a pendulum.
The period of a pendulum is independent of its length. The period is determined by the acceleration due to gravity and the length of the pendulum does not affect this relationship. However, the period of a pendulum may change if the amplitude of the swing is very wide.
The variables that affect the swing of a pendulum are its length, mass, and the amplitude of its initial displacement. A longer pendulum will have a slower swing rate, while a heavier mass will also affect the period of oscillation. Amplitude plays a role in determining the maximum speed of the pendulum swing.
The period of a pendulum is influenced by the length of the pendulum and the acceleration due to gravity. The mass of the pendulum does not affect the period because the force of gravity acts on the entire pendulum mass, causing it to accelerate at the same rate regardless of its mass. This means that the mass cancels out in the equation for the period of a pendulum.
The period increases as the square root of the length.
The mass of the pendulum does not affect its period. The period of a pendulum is only affected by the length of the pendulum and the acceleration due to gravity.
No, the amplitude of a pendulum (the maximum angle it swings from the vertical) does not affect the period (time taken to complete one full swing) of the pendulum. The period of a pendulum depends only on its length and the acceleration due to gravity.
Doubling the mass of a pendulum will not affect the time period of its oscillation. The time period of a pendulum depends on the length of the pendulum and the acceleration due to gravity, but not on the mass of the pendulum bob.
The longer the pendulum is, the greater the period of each swing. If you increase the length four times, you will double the period. It is hard to notice, but the period of a pendulum does depend on the angle of oscillation. For small angles, the period is constant and depends only on the length of the pendulum. As the angle of oscillation (amplitude) is increased, additional factors of a Taylor approximation become important. (T=2*pi*sqrt(L/g)[1+theta^2/16+...] and the period increases. (see hyper physics: http://hyperphysics.phy-astr.gsu.edu/hbase/pendl.html) Interestingly, if the pendulum is supported by a very light wire then the mass of the object at the end of the pendulum does not affect the period. Obviously, the greater the mass, the less any air friction or friction at the pivot will slow the pendulum. Also interestingly, the pendulum period is dependant on the force of gravity on the object (g). One must not assume that g is constant for all places on Earth.
The length of the pendulum has the greatest effect on its period. A longer pendulum will have a longer period, while a shorter pendulum will have a shorter period. The mass of the pendulum bob and the angle of release also affect the period, but to a lesser extent.
no ,because they are not the same