answersLogoWhite

0


Best Answer

The period of a pendulum is approximated by the equation T = 2 pi square-root (L / g). Note: This is only an approximation, applicable only for very small angles of swing. At larger angles, a circular error is introduced, but the basic equation still holds true.

Looking at that equation, you see that time is proportional to the square root of the length of the pendulum, so to double the period of a pendulum you need to increase its length by a factor of four.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: If you want to double the period of a pendulum by how much do you need to change the length?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

How does the period of a pendulum change for length?

The period of a pendulum is directly proportional to the square root of its length. As the length of a pendulum increases, its period increases. Conversely, if the length of a pendulum decreases, its period decreases.


How does the length affect pendulum in a period?

The period of a pendulum is independent of its length. The period is determined by the acceleration due to gravity and the length of the pendulum does not affect this relationship. However, the period of a pendulum may change if the amplitude of the swing is very wide.


Does the weight effect the period of a pendulum?

Yes, the period of a pendulum is not affected by the weight of the pendulum bob. The period is determined by the length of the pendulum and the acceleration due to gravity. A heavier pendulum bob will swing with the same period as a lighter one of the same length.


When the length of a pendulum increases what will it effect on the time period?

The period is proportional to the square root of the length so if you quadruple the length, the period will double.


If we wanted to change the time period of the pendulum what do you think we should do?

To change the time period of a pendulum, you can adjust the length of the pendulum rod. Shortening the rod will decrease the time period, while lengthening it will increase the time period. This is because the time period of a pendulum is directly proportional to the square root of its length.


What happens when you double the mass of a pendulum?

Doubling the mass of a pendulum will not affect the time period of its oscillation. The time period of a pendulum depends on the length of the pendulum and the acceleration due to gravity, but not on the mass of the pendulum bob.


What happens to the period of a pendulum if you increase its mass?

Increasing the mass of a pendulum would not change the period of its oscillation. The period of a pendulum only depends on the length of the pendulum and the acceleration due to gravity, but not the mass of the pendulum bob.


List 3 things that you could changemanipulate about a pendulum?

Adjust the length of the pendulum: Changing the length will alter the period of the pendulum's swing. Adjust the mass of the pendulum bob: Adding or removing weight will affect the pendulum's period. Change the initial angle of release: The angle at which the pendulum is released will impact its amplitude and period.


What happens to the period o a pendulum when its length is increased?

If the length of a pendulum is increased, the period of the pendulum also increases. This relationship is described by the equation for the period of a pendulum, which is directly proportional to the square root of the length of the pendulum. This means that as the length increases, the period also increases.


How does length effect the period of a pendulum?

A longer pendulum has a longer period.


Does the force gravity speed up the period of a pendulum?

No, the force of gravity does not affect the period of a pendulum. The period of a pendulum is determined by the length of the pendulum and the acceleration due to gravity. Changing the force of gravity would not change the period as long as the length of the pendulum remains constant.


What is the length of a pendulum with a period of 1.49 s?

pendulum length (L)=1.8081061073513foot pendulum length (L)=0.55111074152067meter