The answer depends on what P represents and also what 4 and C are.
The questions should read '650 p c in the UK? Answer: 650 parliamentary constituencies in the UK!
The smallest positive integer, p, that satisifesp = 5a + 3 = 8b + 2 = 9c + 4 (where a, b and c are integers) is 58.So the solution set is 58 + 360k where k is an integer.The smallest positive integer, p, that satisifesp = 5a + 3 = 8b + 2 = 9c + 4 (where a, b and c are integers) is 58.So the solution set is 58 + 360k where k is an integer.The smallest positive integer, p, that satisifesp = 5a + 3 = 8b + 2 = 9c + 4 (where a, b and c are integers) is 58.So the solution set is 58 + 360k where k is an integer.The smallest positive integer, p, that satisifesp = 5a + 3 = 8b + 2 = 9c + 4 (where a, b and c are integers) is 58.So the solution set is 58 + 360k where k is an integer.
#include<stdio.h> #include<stdlib.h> #include<math.h> #include<conio.h> void main(void) { int K, P, C, J; double A[100][101]; int N; int Row[100]; double X[100]; double SUM, M; int T; do { printf("Please enter number of equations [Not more than %d]\n",100); scanf("%d", &N); } while( N > 100); printf("You say there are %d equations.\n", N); printf("From AX = B enter elements of [A,B] row by row:\n"); for (K = 1; K <= N; K++) { for (J = 1; J <= N+1; J++) { printf(" For row %d enter element %d please :\n", K, J); scanf("%lf", &A[K-1][J-1]); } } for (J = 1; J<= N; J++) Row[J-1] = J - 1; for (P = 1; P <= N - 1; P++) { for (K = P + 1; K <= N; K++) { if ( fabs(A[Row[K-1]][P-1]) > fabs(A[Row[P-1]][P-1]) ) { T = Row[P-1]; Row[P-1] = Row[K-1]; Row[K-1] = T; } } if (A[Row[P-1]][P-1] 0) { printf("The matrix is SINGULAR !\n"); printf("Cannot use algorithm --- exit\n"); exit(1); } X[N-1] = A[Row[N-1]][N] / A[Row[N-1]][N-1]; for (K = N - 1; K >= 1; K--) { SUM = 0; for (C = K + 1; C <= N; C++) { SUM += A[Row[K-1]][C-1] * X[C-1]; } X[K-1] = ( A[Row[K-1]][N] - SUM) / A[Row[K-1]][K-1]; } for( K = 1; K <= N; K++) printf("X[%d] = %lf\n", K, X[K-1]); getch(); }
four central points of the compass
K. P. A. C. Lalitha was born on 1947-02-25.
If p is the probability that any one toss lands on "heads", the probability that exactly 4 toss out of 8 lands on head is this: p^4 * (1-p)^4 * C(4,8) Where C(k,n) is an old notation for n! / ( k! * (n-k)! ) So C(4,8) = 8! / ( 4! * 4!) = 8*7*6*5 / 24 = 70 If your coin is well balanced, p is 50% and you get your answer: (0.5)^8 * 70 = 70/256 =~ 27,34%
P
Assume Plaintext = P, Ciphertext = C, and the Key = K. C = P * K Therefore, multiply both sides by the inverse of P and you will get: C * P^(-1) = K Or, (ciphertext) * (inverse plaintext) = key If the size of the key is known as well, then use that same size when creating P and C matrices.
According to SOWPODS (the combination of Scrabble dictionaries used around the world) there are 4 words with the pattern P-C---K--. That is, nine letter words with 1st letter P and 3rd letter C and 7th letter K. In alphabetical order, they are: pacemaker pachinkos picnicked picnicker
The answer depends on what P represents and also what 4 and C are.
#include<iostream> #include<string.h> //#include<graphics.h> //#include<dos.h> #include<math.h> using namespace std; int main() { // clrscr(); int c=1,c1=4,c2=1,c3=1,r[2000][10],c4=1,c5=1,p[2000][10],q[2000][10],o[2000][10],t[2000][10],s[2000][10],w[2000][10],i,l=1,j,k,m,u[2000][10],a[2000][10],v,e=0,g=1,f=1,h=0,b[2000][10],z[2000][10],y[6000][5],x[2000][10]; cout<<"Enter 0 for not selecting and 1 for selecting\n"; for(i=0;i<=15;i++) { cout<<"Enter the value for "<<i<<":"; cin>>v; if(v==1) { a[c][5]=i; m=i; while(c1!=0) { a[c][c1]=m%2; m=m/2; c1--; } c++; c1=4; } } for(i=1;i<c;i++) { for(j=1;j<c;j++) { for(k=1;k<=4;k++) { if(a[i][k]+a[j][k]==1) e++; } if(e==1) { for(k=1;k<=4;k++) { if(a[i][k]+a[j][k]!=1) b[f][g]=a[i][k]; else b[f][g]=3; g++; } b[f][5]=a[i][5]; b[f][6]=a[j][5]; g=1; f++; h++; } e=0; } if(h==0) { for(k=1;k<=4;k++) x[c2][k]=a[i][k]; c2++; } h=0; } c=0; for(i=1;i<f;i++) { for(j=1;j<i;j++) { for(k=1;k<=4;k++) { if(b[i][k]==b[j][k]) c++; } if(c!=4) e++; c=0; } if(e==i-1) { for(k=1;k<=6;k++) u[h+1][k]=b[i][k]; h++; } e=0; } for(i=1;i<=h;i++) { if(u[i][7]!=4) { for(j=1;j<=h;j++) { if(u[j][7]!=4) { if((u[i][6]==u[j][5])(u[i][6]==u[j][5])(u[i][5]==u[j][5])(u[i][5]==u[j][6])) { for(k=1;k<=h;k++) { if(u[j][6]==u[k][5]u[j][6]==u[k][6]u[j][5]==u[k][5]u[j][5]==u[k][6]) { for(e=1;e<=h;e++) { if(i!=j&&i!=k&&i!=e&&j!=k&&j!=e&&k!=e) { if(u[k][6]!=u[e][5]&&u[k][6]!=u[e][6]&&u[k][6]!=u[e][6]&&u[k][6]!=u[e][5]) u[j][7]=4; } } } } } } } } } cout<<endl; f=h+1; e=0;h=0;g=1;l=1;c=1; for(i=1;i<f;i++) { for(j=1;j<f;j++) { for(k=1;k<=4;k++) { if(u[i][k]+u[j][k]==1) e++; if((u[i][k]+u[j][k]==3)(u[i][k]+u[j][k]==4)) e=2; } if(e==1) { for(k=1;k<=4;k++) { if(u[i][k]+u[j][k]!=1&&u[i][k]+u[j][k]!=6) z[l][g]=u[i][k]; else z[l][g]=3; g++; } g=1; l++; h++; } e=0; } if(h==0) { for(k=1;k<=7;k++) w[c3][k]=u[i][k]; c3++; } h=0; } c=0; for(i=1;i<l;i++) { for(j=1;j<i;j++) { for(k=1;k<=4;k++) { if(z[i][k]==z[j][k]) c++; } if(c!=4) e++; c=0; } if(e==i-1) { for(k=1;k<=4;k++) t[h+1][k]=z[i][k]; h++; } e=0; } l=h+1; e=0;h=0;g=1;m=1;c=1;c1=4; for(i=1;i<l;i++) { for(j=i+1;j<l;j++) { for(k=1;k<=4;k++) { if(t[i][k]+t[j][k]==1) e++; if(t[i][k]+t[j][k]==3t[i][k]+t[j][k]==4) e=2; } if(e==1) { for(k=1;k<=4;k++) { if(t[i][k]+t[j][k]!=1&&t[i][k]+t[j][k]!=6) y[m][g]=t[i][k]; else y[m][g]=3; g++; } g=1; m++; h++; } e=0; } if(h==0) { for(k=1;k<=4;k++) r[c4][k]=t[i][k]; c4++; } h=0; } c=0;h=0; for(i=1;i<m;i++) { for(j=1;j<i;j++) { for(k=1;k<=4;k++) { if(y[i][k]==y[j][k]) c++; } if(c!=4) e++; c=0; } if(e==i-1) { for(k=1;k<=4;k++) s[h+1][k]=y[i][k]; h++; } e=0; } f=h+1; e=0;h=0;g=1;l=1;c=1; for(i=1;i<f;i++) { for(j=1;j<f;j++) { for(k=1;k<=4;k++) { if(s[i][k]+s[j][k]==1) e++; if((s[i][k]+s[j][k]==3)(s[i][k]+s[j][k]==4)) e=2; } if(e==1) { for(k=1;k<=4;k++) { if(s[i][k]+s[j][k]!=1&&s[i][k]+s[j][k]!=6) q[l][g]=s[i][k]; else q[l][g]=3; g++; } g=1; l++; h++; } e=0; } if(h==0) { for(k=1;k<=4;k++) p[c5][k]=s[i][k]; c5++; } h=0; } c=0; for(i=1;i<l;i++) { for(j=1;j<i;j++) { for(k=1;k<=4;k++) { if(q[i][k]==q[j][k]) c++; } if(c!=4) e++; c=0; } if(e==i-1) { for(k=1;k<=4;k++) o[h+1][k]=q[i][k]; h++; } e=0; } for(i=1;i<=h;i++) { cout<<1; } cout<<endl; for(i=1;i<c2;i++) { if(x[i][1]==0) cout<<"A'"; if(x[i][1]==1) cout<<"A"; if(x[i][2]==0) cout<<"B'"; if(x[i][2]==1) cout<<"B"; if(x[i][3]==0) cout<<"C'"; if(x[i][3]==1) cout<<"C"; if(x[i][4]==0) cout<<"D'"; if(x[i][4]==1) cout<<"D"; cout<<"+"; } c=0; for(i=1;i<c3;i++) { if(w[i][7]!=4) { if(w[i][1]==0) cout<<"A'"; if(w[i][1]==1) cout<<"A"; if(w[i][2]==0) cout<<"B'"; if(w[i][2]==1) cout<<"B"; if(w[i][3]==0) cout<<"C'"; if(w[i][3]==1) cout<<"C"; if(w[i][4]==0) cout<<"D'"; if(w[i][4]==1) cout<<"D"; cout<<"+"; } } cout<<endl; c=0; for(i=1;i<c4;i++) { for(j=1;j<=h;j++) { if(((o[j][1]-r[i][1])==2(o[j][1]-r[i][1])==3(o[j][1]-r[i][1])==0)&&((o[j][2]-r[i][2])==2(o[j][2]-r[i][2])==3(o[j][2]-r[i][2])==0)&&((o[j][3]-r[i][3])==2(o[j][3]-r[i][3])==0(o[j][3]-r[i][3])==3)&&((o[j][4]-r[i][4])==2(o[j][4]-r[i][4])==0(o[j][4]-r[i][4])==3)) c++; } for(j=1;j<c5;j++) { if(((p[j][1]-r[i][1])==2(p[j][1]-r[i][1])==3(p[j][1]-r[i][1])==0)&&((p[j][2]-r[i][2])==2(p[j][2]-r[i][2])==3(p[j][2]-r[i][2])==0)&&((p[j][3]-r[i][3])==2(p[j][3]-r[i][3])==0(p[j][3]-r[i][3])==3)&&((p[j][4]-r[i][4])==2(p[j][4]-r[i][4])==0(p[j][4]-r[i][4])==3)) c++; } if(c==0) { if(r[i][1]==0) cout<<"A'"; if(r[i][1]==1) cout<<"A"; if(r[i][2]==0) cout<<"B'"; if(r[i][2]==1) cout<<"B"; if(r[i][3]==0) cout<<"C'"; if(r[i][3]==1) cout<<"C"; if(r[i][4]==0) cout<<"D'"; if(r[i][4]==1) cout<<"D"; cout<<"+"; } c=0; } cout<<endl; for(i=1;i<c5;i++) { if(p[i][1]==0) cout<<"A'"; if(p[i][1]==1) cout<<"A"; if(p[i][2]==0) cout<<"B'"; if(p[i][2]==1) cout<<"B"; if(p[i][3]==0) cout<<"C'"; if(p[i][3]==1) cout<<"C"; if(p[i][4]==0) cout<<"D'"; if(p[i][4]==1) cout<<"D"; cout<<"+"; } // getch (); }
class
C-a-m-p r-o-c-k
The letters c e k o p t can be rearranged to make the word pocket.
The questions should read '650 p c in the UK? Answer: 650 parliamentary constituencies in the UK!
I'm going to assume you mean combinations - the unique set of these letters in any order with no sequence repeated. With these letters, there are 60 possible combinations. To see the maths behind this, try typing "permutations of {c,c,c,p,p,k}" into wolfram alpha.