9p+1 = 1p+3 Take away 1p from each side: 8p+1=3 Take away 1 from each side: 8p = 2 Divide both sides by 8: p = 2/8 = 1/4
2p - 16 = 37 + 9p(1) you need to gather like terms on each side, the variable & numbers. add 16 to both sides.2p - 16 + 16 = 37 + 9p + 162p = 53 + 9p(2) now subtract 9p from both sides to get:2p - 9p = 53+9p - 9p-7p = 53(3) now divide each side by -7-7p/-7 = 53/-7p = -53/7
To simplify the expression ( 7p - 1 - 9p + 5 ), first combine like terms. The ( 7p ) and ( -9p ) give ( -2p ). The constant terms ( -1 ) and ( +5 ) combine to ( +4 ). Therefore, the simplified expression is ( -2p + 4 ).
The equation (9p + 8 = 10p + 7) is an open equation because it contains a variable, (p), and is not universally true or false for all values of (p). To determine if it can be true for some value of (p), we can rearrange it. Subtracting (9p) from both sides gives (8 = p + 7), which simplifies to (p = 1). Therefore, the equation is true when (p = 1), but false for other values of (p).
The expression "9p 8p" seems to refer to the multiplication of two terms involving the variable ( p ). It can be rewritten as ( 9p \times 8p ), which equals ( 72p^2 ) after multiplying the coefficients (9 and 8) and adding the exponents of ( p ) (1 + 1). Thus, the result is ( 72p^2 ).
If you mean 3 pence, there are two ways, 3 x 1p coins or 1 x 1p plus 1 x 2p coin.
2p - 16 = 37 + 9p(1) you need to gather like terms on each side, the variable & numbers. add 16 to both sides.2p - 16 + 16 = 37 + 9p + 162p = 53 + 9p(2) now subtract 9p from both sides to get:2p - 9p = 53+9p - 9p-7p = 53(3) now divide each side by -7-7p/-7 = 53/-7p = -53/7
To simplify the expression ( 7p - 1 - 9p + 5 ), first combine like terms. The ( 7p ) and ( -9p ) give ( -2p ). The constant terms ( -1 ) and ( +5 ) combine to ( +4 ). Therefore, the simplified expression is ( -2p + 4 ).
The equation (9p + 8 = 10p + 7) is an open equation because it contains a variable, (p), and is not universally true or false for all values of (p). To determine if it can be true for some value of (p), we can rearrange it. Subtracting (9p) from both sides gives (8 = p + 7), which simplifies to (p = 1). Therefore, the equation is true when (p = 1), but false for other values of (p).
The expression "9p 8p" seems to refer to the multiplication of two terms involving the variable ( p ). It can be rewritten as ( 9p \times 8p ), which equals ( 72p^2 ) after multiplying the coefficients (9 and 8) and adding the exponents of ( p ) (1 + 1). Thus, the result is ( 72p^2 ).
If you mean 3 pence, there are two ways, 3 x 1p coins or 1 x 1p plus 1 x 2p coin.
126 + 1 + 290 = 417
Let S = Pair of Scissors J = Jar of Paste and P = Pencils Then 1S + 2J = 8P 1J = 1S + 1P From the second equation, 1S = 1J - 1P Substitute this value in the first equation: 1J - 1P + 2J = 8P so that 3J - 1P = 8P or 3J = 9P J = 3P Three pencils will balance 1 jar.
No...it equals 4...
It can be done in 162 ways, viz: 1 × 20p, 1 × 10p, 1 × 5p 1 × 20p, 1 × 10p, 2 × 2p, 1 × 1p 1 × 20p, 1 × 10p, 1 × 2p, 3 × 1p 1 × 20p, 1 × 10p, 5 × 1p 1 × 20p, 3 × 5p 1 × 20p, 2 × 5p, 2 × 2p, 1 × 1p 1 × 20p, 2 × 5p, 1 × 2p, 3 × 1p 1 × 20p, 2 × 5p, 5 × 1p 1 × 20p, 1 × 5p, 5 × 2p 1 × 20p, 1 × 5p, 4 × 2p, 2 × 1p 1 × 20p, 1 × 5p, 3 × 2p, 4 × 1p 1 × 20p, 1 × 5p, 2 × 2p, 6 × 1p 1 × 20p, 1 × 5p, 1 × 2p, 8 × 1p 1 × 20p, 1 × 5p, 10 × 1p 1 × 20p, 7 × 2p, 1 × 1p 1 × 20p, 6 × 2p, 3 × 1p 1 × 20p, 5 × 2p, 5 × 1p 1 × 20p, 4 × 2p, 7 × 1p 1 × 20p, 3 × 2p, 9 × 1p 1 × 20p, 2 × 2p, 11 × 1p 1 × 20p, 1 × 2p, 13 × 1p 1 × 20p, 15 × 1p 3 × 10p, 1 × 5p 3 × 10p, 2 × 2p, 1 × 1p 3 × 10p, 1 × 2p, 3 × 1p 3 × 10p, 5 × 1p 2 × 10p, 3 × 5p 2 × 10p, 2 × 5p, 2 × 2p, 1 × 1p 2 × 10p, 2 × 5p, 1 × 2p, 3 × 1p 2 × 10p, 2 × 5p, 5 × 1p 2 × 10p, 1 × 5p, 5 × 2p 2 × 10p, 1 × 5p, 4 × 2p, 2 × 1p 2 × 10p, 1 × 5p, 3 × 2p, 4 × 1p 2 × 10p, 1 × 5p, 2 × 2p, 6 × 1p 2 × 10p, 1 × 5p, 1 × 2p, 8 × 1p 2 × 10p, 1 × 5p, 10 × 1p 2 × 10p, 7 × 2p, 1 × 1p 2 × 10p, 6 × 2p, 3 × 1p 2 × 10p, 5 × 2p, 5 × 1p 2 × 10p, 4 × 2p, 7 × 1p 2 × 10p, 3 × 2p, 9 × 1p 2 × 10p, 2 × 2p, 11 × 1p 2 × 10p, 1 × 2p, 13 × 1p 2 × 10p, 15 × 1p 1 × 10p, 5 × 5p 1 × 10p, 4 × 5p, 2 × 2p, 1 × 1p 1 × 10p, 4 × 5p, 1 × 2p, 3 × 1p 1 × 10p, 4 × 5p, 5 × 1p 1 × 10p, 3 × 5p, 5 × 2p 1 × 10p, 3 × 5p, 4 × 2p, 2 × 1p 1 × 10p, 3 × 5p, 3 × 2p, 4 × 1p 1 × 10p, 3 × 5p, 2 × 2p, 6 × 1p 1 × 10p, 3 × 5p, 1 × 2p, 8 × 1p 1 × 10p, 3 × 5p, 10 × 1p 1 × 10p, 2 × 5p, 7 × 2p, 1 × 1p 1 × 10p, 2 × 5p, 6 × 2p, 3 × 1p 1 × 10p, 2 × 5p, 5 × 2p, 5 × 1p 1 × 10p, 2 × 5p, 4 × 2p, 7 × 1p 1 × 10p, 2 × 5p, 3 × 2p, 9 × 1p 1 × 10p, 2 × 5p, 2 × 2p, 11 × 1p 1 × 10p, 2 × 5p, 1 × 2p, 13 × 1p 1 × 10p, 2 × 5p, 15 × 1p 1 × 10p, 1 × 5p, 10 × 2p 1 × 10p, 1 × 5p, 9 × 2p, 2 × 1p 1 × 10p, 1 × 5p, 8 × 2p, 4 × 1p 1 × 10p, 1 × 5p, 7 × 2p, 6 × 1p 1 × 10p, 1 × 5p, 6 × 2p, 8 × 1p 1 × 10p, 1 × 5p, 5 × 2p, 10 × 1p 1 × 10p, 1 × 5p, 4 × 2p, 12 × 1p 1 × 10p, 1 × 5p, 3 × 2p, 14 × 1p 1 × 10p, 1 × 5p, 2 × 2p, 16 × 1p 1 × 10p, 1 × 5p, 1 × 2p, 18 × 1p 1 × 10p, 1 × 5p, 20 × 1p 1 × 10p, 12 × 2p, 1 × 1p 1 × 10p, 11 × 2p, 3 × 1p 1 × 10p, 10 × 2p, 5 × 1p 1 × 10p, 9 × 2p, 7 × 1p 1 × 10p, 8 × 2p, 9 × 1p 1 × 10p, 7 × 2p, 11 × 1p 1 × 10p, 6 × 2p, 13 × 1p 1 × 10p, 5 × 2p, 15 × 1p 1 × 10p, 4 × 2p, 17 × 1p 1 × 10p, 3 × 2p, 19 × 1p 1 × 10p, 2 × 2p, 21 × 1p 1 × 10p, 1 × 2p, 23 × 1p 1 × 10p, 25 × 1p 7 × 5p 6 × 5p, 2 × 2p, 1 × 1p 6 × 5p, 1 × 2p, 3 × 1p 6 × 5p, 5 × 1p 5 × 5p, 5 × 2p 5 × 5p, 4 × 2p, 2 × 1p 5 × 5p, 3 × 2p, 4 × 1p 5 × 5p, 2 × 2p, 6 × 1p 5 × 5p, 1 × 2p, 8 × 1p 5 × 5p, 10 × 1p 4 × 5p, 7 × 2p, 1 × 1p 4 × 5p, 6 × 2p, 3 × 1p 4 × 5p, 5 × 2p, 5 × 1p 4 × 5p, 4 × 2p, 7 × 1p 4 × 5p, 3 × 2p, 9 × 1p 4 × 5p, 2 × 2p, 11 × 1p 4 × 5p, 1 × 2p, 13 × 1p 4 × 5p, 15 × 1p 3 × 5p, 10 × 2p 3 × 5p, 9 × 2p, 2 × 1p 3 × 5p, 8 × 2p, 4 × 1p 3 × 5p, 7 × 2p, 6 × 1p 3 × 5p, 6 × 2p, 8 × 1p 3 × 5p, 5 × 2p, 10 × 1p 3 × 5p, 4 × 2p, 12 × 1p 3 × 5p, 3 × 2p, 14 × 1p 3 × 5p, 2 × 2p, 16 × 1p 3 × 5p, 1 × 2p, 18 × 1p 3 × 5p, 20 × 1p 2 × 5p, 12 × 2p, 1 × 1p 2 × 5p, 11 × 2p, 3 × 1p 2 × 5p, 10 × 2p, 5 × 1p 2 × 5p, 9 × 2p, 7 × 1p 2 × 5p, 8 × 2p, 9 × 1p 2 × 5p, 7 × 2p, 11 × 1p 2 × 5p, 6 × 2p, 13 × 1p 2 × 5p, 5 × 2p, 15 × 1p 2 × 5p, 4 × 2p, 17 × 1p 2 × 5p, 3 × 2p, 19 × 1p 2 × 5p, 2 × 2p, 21 × 1p 2 × 5p, 1 × 2p, 23 × 1p 2 × 5p, 25 × 1p 1 × 5p, 15 × 2p 1 × 5p, 14 × 2p, 2 × 1p 1 × 5p, 13 × 2p, 4 × 1p 1 × 5p, 12 × 2p, 6 × 1p 1 × 5p, 11 × 2p, 8 × 1p 1 × 5p, 10 × 2p, 10 × 1p 1 × 5p, 9 × 2p, 12 × 1p 1 × 5p, 8 × 2p, 14 × 1p 1 × 5p, 7 × 2p, 16 × 1p 1 × 5p, 6 × 2p, 18 × 1p 1 × 5p, 5 × 2p, 20 × 1p 1 × 5p, 4 × 2p, 22 × 1p 1 × 5p, 3 × 2p, 24 × 1p 1 × 5p, 2 × 2p, 26 × 1p 1 × 5p, 1 × 2p, 28 × 1p 1 × 5p, 30 × 1p 17 × 2p, 1 × 1p 16 × 2p, 3 × 1p 15 × 2p, 5 × 1p 14 × 2p, 7 × 1p 13 × 2p, 9 × 1p 12 × 2p, 11 × 1p 11 × 2p, 13 × 1p 10 × 2p, 15 × 1p 9 × 2p, 17 × 1p 8 × 2p, 19 × 1p 7 × 2p, 21 × 1p 6 × 2p, 23 × 1p 5 × 2p, 25 × 1p 4 × 2p, 27 × 1p 3 × 2p, 29 × 1p 2 × 2p, 31 × 1p 1 × 2p, 33 × 1p 35 × 1p
1 plus 1 plus 1 plus 1 equals 1 times 4. 1 times 4 equals 4. 4 minus 4 equals 0. 0
4+1=5. Plus 4 equals 9. Plus 77685769844446473 equals 77685769844446482. Plus 3 equals 77685769844446485. Plus 8 equals 77685769844446493. Plus 1 equals 77685769844446494. Plus 9870998342523322424 equals 1064785604097768918. Plus 4 equals 1064785604097768922.
29 Ways: 20(1p) 18(1p),1(2p) 16(1p),2(2p) 14(1p),3(2p) 12(1p),4(2p) 10(1p),5(2p) 8(1p),6(2p) 6(1p),7(2p) 4(1p),8(2p) 2(1p),9(2p) 10(2p) 4(5p) 3(5p),2(2p),1(1p) 3(5p),1(2p),3(1p) 3(5p),5(1p) 2(5p),5(2p) 2(5p),4(2p),2(1p) 2(5p),3(2p),4(1p) 2(5p),2(2p),6(1p) 2(5p),1(2p),8(1p) 2(5p),10(1p) 1(5p),7(2p),1(1p) 1(5p),6(2p),3(1p) 1(5p),5(2p),5(1p) 1(5p),4(2p),7(1p) 1(5p),3(2p),9(1p) 1(5p),2(2p),11(1p) 1(5p),1(2p),13(1p) 1(5p),15(1p)