answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: A circle has an arc of length 32 and pi (32pi) that is intercepted by a central angle of 240 and deg.?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

If the radius of a circle is doubled how is the length of the arc intercepted by a fixed central angle changed?

If the radius of a circle is tripled, how is the length of the arc intercepted by a fixed central angle changed?


How do you find the degree measure of a central angle in a circle if both the radius and the length of the intercepted arc are known?

-- Circumference of the circle = (pi) x (radius) -- length of the intercepted arc/circumference = degree measure of the central angle/360 degrees


What is a central angle and what is the relationship of the central angle and the intercepted arc?

In a circle, a central angle is formed by two radii. By definition, the measure of the intercepted arc is equal to the central angle.


What is the formula of a central angle of a circle?

Central angle of a circle is the same as the measure of the intercepted arc. davids1: more importantly the formulae for a central angle is π=pi, R=radius Central Angle= Arc Length x 180 / π x R


What is the length of the arc intercepted on a circle of radius 14 cm by the arms of a central angle of 45?

Length of arc = angle (in radians)*radius = (pi/4)*14 = 10.996 cm


What is the measure of the arc of a circle intercepted by a central angle that measures 64 degrees?

64°/360° = 8/45 of the circle = 0.1777 (rounded, repeating)The arc's length is 8/45 of the circle's total circumference.


How do you work out the circumference of a circle using radius?

The formula for calculating the circumference of a circle is 2πr, where r is the radius of the circle and π is 3.1415926535890793 - usually shorted to either 3.1416 or 3.14 So that the circumference of a circle with a radius of 10 units is 62.83 units There are pi radians in a half of a circle. Thus, the measure of a central angle which is a straight line is pi radians. We have a formula that show that the length of an intercepted arc is equal to the product of the angle in radians that intercepts that arc, with the length of the radius of the circle. So we can say that the length of a semicircle is (pi)(r). In a full circle are 2pi radians. So the length of intercepted arc from a central angle with measure 2pi is 2(pi)(r).


A central angle of a circle of radius 30 cm intercepts an arc of 6 cm Express the central angle in radians and in degrees?

A central angle is measured by its intercepted arc. Let's denote the length of the intercepted arc with s, and the length of the radius r. So, s = 6 cm and r = 30 cm. When a central angle intercepts an arc whose length measure equals the length measure of the radius of the circle, this central angle has a measure 1 radian. To find the angle in our problem we use the following relationship: measure of an angle in radians = (length of the intercepted arc)/(length of the radius) measure of our angle = s/r = 6/30 = 1/5 radians. Now, we need to convert this measure angle in radians to degrees. Since pi radians = 180 degrees, then 1 radians = 180/pi degrees, so: 1/5 radians = (1/5)(180/pi) degrees = 36/pi degrees, or approximate to 11.5 degrees.


What is the relation between the arc length and angle for a sector of a circle?

A sector is the area enclosed by two radii of a circle and their intercepted arc, and the angle that is formed by these radii, is called a central angle. A central angle is measured by its intercepted arc. It has the same number of degrees as the arc it intercepts. For example, a central angle which is a right angle intercepts a 90 degrees arc; a 30 degrees central angle intercepts a 30 degrees arc, and a central angle which is a straight angle intercepts a semicircle of 180 degrees. Whereas, an inscribed angle is an angle whose vertex is on the circle and whose sides are chords. An inscribed angle is also measured by its intercepted arc. But, it has one half of the number of degrees of the arc it intercepts. For example, an inscribed angle which is a right angle intercepts a 180 degrees arc. So, we can say that an angle inscribed in a semicircle is a right angle; a 30 degrees inscribed angle intercepts a 60 degrees arc. In the same or congruent circles, congruent inscribed angles have congruent intercepted arcs.


In a 130 inch diameter circle what is the length of the arc intercepted by a central angle of 115 degrees?

Length of arc: 115/360 times (130pi) = 130.5 inches rounded


What is the length of an arc of a circle?

The length of an arc of a circle refers to the product of the central angle and the radius of the circle.


Find the length of the arc on a circle of radius r equals 16 inches intercepted by a central angle 0 theta equals 60 degrees?

The length of an arc on a circle of radius 16, with an arc angle of 60 degrees is about 16.8.The circumference of the circle is 2 pi r, or about 100.5. 60 degrees of a circle is one sixth of the circle, so the arc is one sixth of 100.5, or 16.8.