the answer is translation
No, dilation is not a rigid motion transformation. Rigid motion transformations, such as translations, rotations, and reflections, preserve distances and angles. In contrast, dilation changes the size of a figure while maintaining its shape, thus altering distances between points. Therefore, while the shape remains similar, the overall dimensions are not preserved.
A transformation determined by a center point and a scale factor is known as a dilation. In this transformation, all points in a geometric figure are moved away from or toward the center point by a factor of the scale. If the scale factor is greater than 1, the figure enlarges; if it is between 0 and 1, the figure shrinks. This transformation preserves the shape of the figure but alters its size.
The new figure after a transformation is the result of applying specific changes to the original shape, such as translation, rotation, reflection, or scaling. Each transformation alters the figure's position, orientation, or size while maintaining its fundamental properties. To determine the coordinates or characteristics of the new figure, one must apply the transformation rules to the original figure's vertices or points accordingly. The resulting figure can vary in appearance but retains the same overall structure and proportions as the original.
A congruence transformation, or isometry, is a transformation that preserves distances and angles, such as translations, rotations, and reflections. Among common transformations, dilation (scaling) is not a congruence transformation because it alters the size of the figure, thus changing the distances between points. Therefore, dilation is the correct answer to your question.
the answer is translation
Its called points maybe
The original figure is called the pre-image. After the transformation it becomes the image.
No, dilation is not a rigid motion transformation. Rigid motion transformations, such as translations, rotations, and reflections, preserve distances and angles. In contrast, dilation changes the size of a figure while maintaining its shape, thus altering distances between points. Therefore, while the shape remains similar, the overall dimensions are not preserved.
A transformation determined by a center point and a scale factor is known as a dilation. In this transformation, all points in a geometric figure are moved away from or toward the center point by a factor of the scale. If the scale factor is greater than 1, the figure enlarges; if it is between 0 and 1, the figure shrinks. This transformation preserves the shape of the figure but alters its size.
The new figure after a transformation is the result of applying specific changes to the original shape, such as translation, rotation, reflection, or scaling. Each transformation alters the figure's position, orientation, or size while maintaining its fundamental properties. To determine the coordinates or characteristics of the new figure, one must apply the transformation rules to the original figure's vertices or points accordingly. The resulting figure can vary in appearance but retains the same overall structure and proportions as the original.
translation
A congruence transformation, or isometry, is a transformation that preserves distances and angles, such as translations, rotations, and reflections. Among common transformations, dilation (scaling) is not a congruence transformation because it alters the size of the figure, thus changing the distances between points. Therefore, dilation is the correct answer to your question.
A rigid motion transformation is a type of transformation that preserves the shape and size of geometric figures. This means that distances between points and angles remain unchanged during the transformation. Common examples include translations, rotations, and reflections. Essentially, a rigid motion maintains the congruence of the original figure with its image after the transformation.
A rigid motion is a transformation in geometry that preserves the shape and size of a figure. This means that distances between points and angles remain unchanged during the transformation. Common types of rigid motions include translations, rotations, and reflections. Since the original figure and its transformed image are congruent, rigid motions do not alter the overall structure of the figure.
When a figure is reflected, its orientation changes, meaning that the figure appears as a mirror image across the line of reflection. While the shape and size of the figure remain unchanged, the relative positions of points in the figure are reversed. This transformation preserves distances and angles, maintaining congruence with the original figure.
Invariants are points that remain the same under certain transformations. You could plug the points into your transformation and note that what does in is the same as what comes out. The details depend on the transformation.