No, dilation is not a rigid motion transformation. Rigid motion transformations, such as translations, rotations, and reflections, preserve distances and angles. In contrast, dilation changes the size of a figure while maintaining its shape, thus altering distances between points. Therefore, while the shape remains similar, the overall dimensions are not preserved.
A non-rigid transformation is one that alters the shape or size of a figure, such as dilation or stretching. Unlike rigid motions, which preserve distances and angles (like translations, rotations, and reflections), non-rigid transformations can change the proportions and overall dimensions of an object. For example, scaling a shape to make it larger or smaller is a non-rigid transformation.
A rigid motion transformation is a type of transformation that preserves the shape and size of geometric figures. This means that distances between points and angles remain unchanged during the transformation. Common examples include translations, rotations, and reflections. Essentially, a rigid motion maintains the congruence of the original figure with its image after the transformation.
A transformation that is not a congruent image is a dilation. Unlike rigid transformations such as translations, rotations, and reflections that preserve shape and size, dilation changes the size of a figure while maintaining its shape. This means that the original figure and the dilated figure are similar, but not congruent, as their dimensions differ.
A rigid motion is a transformation in geometry that preserves the shape and size of a figure. This means that distances between points and angles remain unchanged during the transformation. Common types of rigid motions include translations, rotations, and reflections. Since the original figure and its transformed image are congruent, rigid motions do not alter the overall structure of the figure.
A transformation that does not preserve distance and angle measures is a non-rigid transformation, such as a dilation or a shear transformation. In a dilation, the distances from a center point are scaled, changing the size of the figure but not maintaining the original shape. In a shear transformation, the shape is distorted by slanting it in one direction, altering both distances and angles between points. These transformations result in figures that are not congruent to their original form.
dilation (APEX)
A rigid transformation means it has the same size and shape so it would be a dilation
Flexing is one such transformation.
Stretch
A rigid motion transformation is one that preserves distances and angles between points in a geometric shape. Anything that involves changing the size or shape of the object, such as scaling or shearing, would not describe a rigid motion transformation.
A rigid motion transformation is a type of transformation that preserves the shape and size of geometric figures. This means that distances between points and angles remain unchanged during the transformation. Common examples include translations, rotations, and reflections. Essentially, a rigid motion maintains the congruence of the original figure with its image after the transformation.
Rigid motion
Dilation, shear, and rotation are not rigid motion transformations. Dilation involves changing the size of an object, shear involves stretching or skewing it, and rotation involves rotating it around a fixed point. Unlike rigid motions, these transformations may alter the shape or orientation of an object.
A transformation that is not a congruent image is a dilation. Unlike rigid transformations such as translations, rotations, and reflections that preserve shape and size, dilation changes the size of a figure while maintaining its shape. This means that the original figure and the dilated figure are similar, but not congruent, as their dimensions differ.
A rigid motion is a transformation in geometry that preserves the shape and size of a figure. This means that distances between points and angles remain unchanged during the transformation. Common types of rigid motions include translations, rotations, and reflections. Since the original figure and its transformed image are congruent, rigid motions do not alter the overall structure of the figure.
Dilation.
Dilation