When i will be a pro will help
Not really. Neglecting air resistance just makes it easier to solve equations and grasp concepts. If one were to actually be collecting data from your experiment, they would have to take in air resistance, especially if the object's cross section were high and/or density was low.
if length is doubled then resistivity increases&when area is doubled resistivity decreases.
The section that connected Samarkand via Hodjent to Isfara, Kokand, and Osh is known as the "Silk Road." This historic trade route facilitated not only commerce but also cultural exchanges between various civilizations. It played a significant role in the economic and cultural development of the regions it traversed.
The moment of inertia (I) of a cross section is a measure of its resistance to bending or flexural deformation. It depends on the shape and distribution of the material in the cross section, with common shapes like rectangles, circles, and I-beams having specific formulas to calculate I. For example, for a rectangle, the moment of inertia about its base is given by ( I = \frac{b h^3}{3} ), where ( b ) is the base width and ( h ) is the height. Different cross-sectional shapes will yield different moments of inertia, impacting their strength and stiffness in structural applications.
The answer depends on what the section is of.
A piece of wire stretched such that its length increases and its radius decreases will tend to have its resistance increase. The formula for this is: R = ρL/A where ρ = resistivity of the material composing the wire, L = length of the wire, and A = area of the conducting cross section of the wire. It can easily be seen that as area decreases resistance gets higher. In the case proposed the wire length is not reduced as it is stretched to reduce the area, this increases the resistivity as well.
The resistance of a material is defined as: R = r * l / A where r (actually it is the Greek alphabet rho) is the specific resistance and is independent of shape, structure, etc, but is specific to the material only; l is the length and A is the area of cross section. Let R1 = r * (l1/A1) and after stretching it becomes R2 = r * (l2/A2) R2/R1 = (l2/l1)*(A1/A2) -------------------------- equation 1 If the wire has been stretched with no loss of material, the volume remains the same. Hence, l1A1 = l2A2 which gives A1 = A2*(l2/l1). given that (l2/l1) is 1.25, we get A1/A2 = 1.25 Using this value in equation 1, we get R2/R1 = 1.25 * 1.25 = 1.5625 Hence, the resistance of the wire increases by a factor of 1.5625. - Karthik
A wire with a larger cross section has lower resistance because there is more space for the electrons to flow through, reducing collisions. A smaller cross section increases resistance as there is less space for the electrons to move, causing more collisions and therefore higher resistance.
Cell constant(C) = Resistance(R) X Specific Conductivity(K)
Resistance of a conductor is defined by the specific resistivity, area of cross section and the length of the conductor. R = rL/A, where R is resistance in OHMs, r is specific resistance, L length in mm, A is area of cross section in sq mm
Resistance of a conductor is defined by the specific resistivity, area of cross section and the length of the conductor. R = rL/A, where R is resistance in OHMs, r is specific resistance, L length in mm, A is area of cross section in sq mm
No. Resistance does.
Resistance R =p(L /A)i,e Resistance(R) of a conductor will be directly proportional to its length(L) ==> if the length of the conductor increases its resistance also will increase.i,e Resistance(R) of a conductor is inversely proportional to its cross section area(A) ==> if the Area of the conductor increases its resistance also will decrease.
Resistance is inversely proportional to cross-sectional area. so ,if the thickness of the wire increases, the area of cross-section increases and this results in decrease of the resistance. The resistance R = l p / A where R is the resistance, l is the length of the wire, p(rho) is the electrical resistivity of the material and A is the area of cross section. So R the resistance is inversely proportional to A the area of cross-section. If R increases
The amount of air resistance an object has depends on it's shape and it's frontal cross-section.
The resistance of a wire is the length divided by the cross-section area and the conductivity of the material. So for small resistance you need a wire with short length, large cross-section area (diameter) and a material with high conductivity like copper.
No, the resistance is fixed by the cross section and length of the conductor and does not vary with voltage.