No. For example all polynomials of the form y=xn (or sums of such positive terms) where n is a positive odd number do not have a minimum.
Not quite. The point at infinity cannot be regarded as a maximum since the value will continue to increase asymptotically. As a result no polynomial of odd degree can have a maximum. Only polynomials of an even degree whose leading coefficient is negative will have a global maximum.
Yes, monomials are a specific type of polynomial. A monomial is a polynomial that consists of only one term, which can include variables raised to non-negative integer exponents and coefficients. In contrast, a polynomial can have multiple terms, such as binomials (two terms) or trinomials (three terms). Therefore, all monomials are polynomials, but not all polynomials are monomials.
Yes, polynomials are closed under the operations of addition, subtraction, and multiplication. This means that when you add, subtract, or multiply two polynomials, the result is always another polynomial. For example, if ( p(x) ) and ( q(x) ) are polynomials, then ( p(x) + q(x) ), ( p(x) - q(x) ), and ( p(x) \cdot q(x) ) are all polynomials as well. However, polynomials are not closed under division, as dividing one polynomial by another can result in a non-polynomial expression.
The property that states the difference of two polynomials is always a polynomial is known as the closure property of polynomials. This property indicates that when you subtract one polynomial from another, the result remains within the set of polynomials. This is because polynomial operations (addition, subtraction, and multiplication) preserve the degree and structure of polynomials. Thus, the difference of any two polynomials will also be a polynomial.
Without the specific graph or details of the system of polynomials, I can't provide a precise solution. Generally, the solution to a system of polynomials can be found at the points where the graphs intersect, which represent the values of the variables that satisfy all equations simultaneously. To determine the exact solution, one would typically set the polynomials equal to each other and solve for the variable(s). If you can provide more details or describe the graph, I could assist further!
False
Polynomials of an even degree will always have either a minimum point, or a maximum point, or both.Polynomials of an odd degree may or may not have minima or maxima. If, for example, a polynomial function is simply a transformation of xn, there will be no turning points. For example:f(x) = x5 + 5x4 + 10x3 + 10x2 + 5x + 1 = (x+1)5f'(x) = 5(x+1)4There is only one solution for f'(x) = 0, which is of course x = -1. Since the range of f(x) includes all the real numbers, it follows that this solution represents a point of inflection, and not a turning point.If a polynomial of odd degree does have any turning points, it will have at least one minimum point. It cannot have maximum points only.* * * * *Polynomials of an odd degree cannot have a global maximum or minimum because if the leading coefficient is positive, it goes asymptotically from minus infinity to plus infinity and the other way around if the leading coefficient is negative.
Not quite. The point at infinity cannot be regarded as a maximum since the value will continue to increase asymptotically. As a result no polynomial of odd degree can have a maximum. Only polynomials of an even degree whose leading coefficient is negative will have a global maximum.
The phrase "at least" is considered two words. It is often used to indicate a minimum requirement or quantity. For example, when someone says, "You need at least one hour," they mean that one hour is the minimum needed.
Yes, monomials are a specific type of polynomial. A monomial is a polynomial that consists of only one term, which can include variables raised to non-negative integer exponents and coefficients. In contrast, a polynomial can have multiple terms, such as binomials (two terms) or trinomials (three terms). Therefore, all monomials are polynomials, but not all polynomials are monomials.
At least one year and one day in prison.
Yes, polynomials are closed under the operations of addition, subtraction, and multiplication. This means that when you add, subtract, or multiply two polynomials, the result is always another polynomial. For example, if ( p(x) ) and ( q(x) ) are polynomials, then ( p(x) + q(x) ), ( p(x) - q(x) ), and ( p(x) \cdot q(x) ) are all polynomials as well. However, polynomials are not closed under division, as dividing one polynomial by another can result in a non-polynomial expression.
Minority would be one
it has to be at least 2 or more stars to be a star system.
No. Polynomials are made up of several terms. The terms can be even or odd (assuming they aren't variables, in which case, you don't know if they're even or odd), but the polynomial itself isn't one or the other.
The property that states the difference of two polynomials is always a polynomial is known as the closure property of polynomials. This property indicates that when you subtract one polynomial from another, the result remains within the set of polynomials. This is because polynomial operations (addition, subtraction, and multiplication) preserve the degree and structure of polynomials. Thus, the difference of any two polynomials will also be a polynomial.
Minimum number of director in a private company is 2.