The equation for magnetic force is:
F = q(v × B)
Thus;
F = (1.60 × 10 -19C)(3 × 106 m/s)(2 T) = 9.6 × 10-13 N
F = ma
a = F/m = (9.6 × 10-13 N)/(9.11 × 10-31 kg) = 1.05 × 1018 m/s2
when a magnetic substance in placed i two uniform magnetic field (b) and (h) which are mutually perpendicular and coplanar to each other. then the magnetic field intensity of magnetic field of b which making angle θ with h is tanθtimes of h.mathamatically B=tanθxH.
In the position where the dirction of the magnetic field is perpendicular (normal) to the unit area.
The direct axis refers to the axis in a synchronous machine where the magnetic field is aligned with the rotor’s magnetic field. In terms of a rotating magnetic field, it is the direction in which the rotor produces maximum torque. In the context of electrical engineering, it is crucial for analyzing and controlling synchronous generators and motors, particularly in the dq (direct-quadrature) transformation used for simplifying the analysis of AC machines. The direct axis contrasts with the quadrature axis, which is perpendicular to it.
The moment is maximum when the coil is horizontal because this orientation aligns the plane of the coil perpendicular to the magnetic field. In this position, the magnetic forces acting on the current-carrying coil create the greatest torque, as the angle between the magnetic field lines and the current direction is 90 degrees. This results in the maximum effective leverage on the coil, producing the highest rotational force. Consequently, the induced torque is at its peak, leading to maximum moment.
The given quantum numbers correspond to an electron in a 2p orbital. Here, ( n = 2 ) indicates the principal energy level, ( l = 1 ) specifies the angular momentum (p orbital), ( m_l = 0 ) denotes the magnetic quantum number, which indicates the orientation of the orbital, and ( m_s = +\frac{1}{2} ) indicates the spin of the electron. Thus, this electron is in the 2p orbital, with a specific orientation and spin.
The direction of the magnetic force on an electron is perpendicular to both the electron's velocity and the magnetic field it is in.
perpendicular to the magnetic field direction
Stationary charge don't produce a magnetic field. because it has no velocity in it, without flow of electron we can't find electricity and for that we have no magnetic field for a stationary charge. It produce only electric field.
I would say a magnetic field. When an electron enters a magnetic field that is oriented perpendicular to its path of travel it causes the electron to loop in a circle. While the speed stays the same the velocity is constantly changing due to the circular motion. Hence same speed but undergoing an acceleration.
When a positron encounters a magnetic field, it will experience a force due to its positive charge and the direction of the force will be perpendicular to both the velocity of the positron and the magnetic field. The positron will move in a curved path due to this force, following a trajectory dictated by the strength and orientation of the magnetic field.
If the incident direction of an electron entering a magnetic field is not parallel to the field lines, the electron will experience a force due to the magnetic field. This force will cause the electron to move in a curved path known as a helix. The radius of this helical path depends on the velocity and charge of the electron, as well as the strength of the magnetic field.
they are formed when a electric field and a magnetic field couple. When ever a charged particle undergoes an acceleration it emits electromagnetic radiation. Therefore when an electron 'jumps' from a high energy quantum state to a lower energy quantum state it produces em radiation of a particular frequency. And, more precisely, EM waves are created by accelerating a charge. An electron at rest (or cruising at constant speed) has a stable electric field radiating outwards (really inwards for negative charge). If the electron is accelerated, a ripple in the field radiates outward with the speed of light, with the strongest effect perpendicular to the electron's vector of acceleration and weakest part (zero) along the vector. The electric field fluctuation is in any plane along the vector, and the magnetic part is in the plane perpendicular to that and the vector.
Only moving charges experience force in a magnetic field. i.e.,on moving ,a charge q,with velocity v ,experiences a force in the presence of electric field(E) and magnetic field (B). It can be represented as F= q(v x B)~(Ftotal=Felectricfield + Fmagneticfield ) Force acts perpendicular to both magnetic field and velocity of the electron. Its direction is given by right hand thumb rule or screw rule. The magnetic force is zero if charge is not moving, since lvl=0.
A moving charge (or an electron) has a magnetic field around it. When it is moved in an external magnetic field in such a way that its direction of motion is not parallel to applied magnetic field. then both the fields interact to produce a FORCE on electron.Or you may say that A moving charge, when placed in a magnetic field , experiences a force given by:F=q(V*B) .In this equation, a CROSS PRODUCT is present between velocity "V" and magnetic strength "B" , SO direction of resultant force is at right angle to both V and B. hence force acts at angle of 90 degrees to displacement and hence does no work to change its speed. For more details, contact at saqibahmad81@yahoo.com
The electron will experience a force due to the magnetic field of the horseshoe magnet. The force will cause the electron to follow a curved path due to the Lorentz force. The direction of the curvature will depend on the direction of the magnetic field and the velocity of the electron.
perpendicular
When no net force acts on a loop of wire in a magnetic field, the loop will not experience any acceleration or movement.