Yes, contrapositives are always true, as long as the original statement stood true.
Chat with our AI personalities
Contrapositives are an idea in logic which is very useful in math.We say that A implies B if whenever Statement A is true then we know that statement B is also true.So, Say that A implies B, written:A -> BThe contrapositive of this statement is:Not-B -> Not-ARemember "A implies B" means that B must be true if A is true, so if we know that B is falce, we can deduce that A couldn't be true, so it must be falce.With truth tables it can easily be shown that"A -> B" IF AND ONLY IF "Not-B -> Not-A"So when using the contrapositive, no information is lost.In math, this is often used in proofs when, while trying to demonstrate that A implies B, it is easier to show that Not-B implies Not-A and hence that A implies B.
True
For Apex the answer is “True“.
Assuming that you mean not (p or q) if and only if P ~(PVQ)--> P so now construct a truth table, (just place it vertical since i cannot place it vertical through here.) P True True False False Q True False True False (PVQ) True True True False ~(PVQ) False False False True ~(PVQ)-->P True True True False if it's ~(P^Q) -->P then it's, P True True False False Q True False True False (P^Q) True False False False ~(P^Q) False True True True ~(P^Q)-->P True True False False
true