To determine if the data in a line plot is skewed left, right, or not skewed, you would need to observe the distribution of the data points. If the tail on the left side is longer or fatter, it is left-skewed; if the tail on the right side is longer or fatter, it is right-skewed. If the data points are evenly distributed around a central value, it is not skewed. Without seeing the actual plot, I can't provide a definitive answer.
No, a distribution is considered negatively skewed if the left tail is longer or fatter than the right tail. In this case, the bulk of the data is concentrated on the right side, with a longer tail extending to the left. A positively skewed distribution, on the other hand, has a longer right tail.
Unimodal skewed refers to a distribution that has one prominent peak (or mode) and is asymmetrical, meaning it is not evenly balanced around the peak. In a right (or positively) skewed distribution, the tail on the right side is longer or fatter, indicating that most data points are concentrated on the left. Conversely, in a left (or negatively) skewed distribution, the tail on the left side is longer, with most data points clustered on the right. This skewness affects the mean, median, and mode of the data, typically pulling the mean in the direction of the tail.
When the majority of the data values fall to the right of the mean, the distribution is indeed said to be left skewed, or negatively skewed. In this type of distribution, the tail on the left side is longer or fatter, indicating that there are a few lower values pulling the mean down. This results in the mean being less than the median, as the median is less affected by extreme values. Overall, left skewed distributions show that most data points are higher than the average.
A skewed distribution typically has one tail that is longer or fatter than the other. In a right-skewed distribution, the tail on the right side is longer, while in a left-skewed distribution, the left tail is longer. Therefore, a skewed distribution has one dominant tail, but it can be characterized by its direction (right or left).
In mathematics, "skewed" refers to the asymmetry in the distribution of data. A skewed distribution can be either positively skewed, where the tail on the right side is longer or fatter, or negatively skewed, where the tail on the left side is longer or fatter. This indicates that the mean and median of the data may not align, often with the mean being pulled in the direction of the skew. Understanding skewness helps in analyzing the characteristics of the data and choosing appropriate statistical methods.
on the left and when it is skewed left it is on the right
The population data may be skewed and thus the mean is not a valid statistic. If mean > median, the data will be skewed to the right. If median > mean, the data is skewed to the left.
A positively skewed or right skewed distribution means that the mean of the data falls to the right of the median. Picturewise, most of the frequency would occur to the left of the graph.
If it is very highly skewed then the mode is best.
No, a distribution is considered negatively skewed if the left tail is longer or fatter than the right tail. In this case, the bulk of the data is concentrated on the right side, with a longer tail extending to the left. A positively skewed distribution, on the other hand, has a longer right tail.
Unimodal skewed refers to a distribution that has one prominent peak (or mode) and is asymmetrical, meaning it is not evenly balanced around the peak. In a right (or positively) skewed distribution, the tail on the right side is longer or fatter, indicating that most data points are concentrated on the left. Conversely, in a left (or negatively) skewed distribution, the tail on the left side is longer, with most data points clustered on the right. This skewness affects the mean, median, and mode of the data, typically pulling the mean in the direction of the tail.
When the majority of the data values fall to the right of the mean, the distribution is indeed said to be left skewed, or negatively skewed. In this type of distribution, the tail on the left side is longer or fatter, indicating that there are a few lower values pulling the mean down. This results in the mean being less than the median, as the median is less affected by extreme values. Overall, left skewed distributions show that most data points are higher than the average.
It is a positively skewed distribution.
Symmetric
A skewed distribution typically has one tail that is longer or fatter than the other. In a right-skewed distribution, the tail on the right side is longer, while in a left-skewed distribution, the left tail is longer. Therefore, a skewed distribution has one dominant tail, but it can be characterized by its direction (right or left).
A stemplot can be skewed to the right or left depending on the distribution of the data. If the stem (the left part) has fewer values and the leaves (the right part) extend further out, it indicates a right skew. Conversely, if the leaves are concentrated on the left and the stem has more values, it shows a left skew. Analyzing the distribution of the leaves in relation to the stem helps determine the skewness.
In mathematics, "skewed" refers to the asymmetry in the distribution of data. A skewed distribution can be either positively skewed, where the tail on the right side is longer or fatter, or negatively skewed, where the tail on the left side is longer or fatter. This indicates that the mean and median of the data may not align, often with the mean being pulled in the direction of the skew. Understanding skewness helps in analyzing the characteristics of the data and choosing appropriate statistical methods.