answersLogoWhite

0

When the majority of the data values fall to the right of the mean, the distribution is indeed said to be left skewed, or negatively skewed. In this type of distribution, the tail on the left side is longer or fatter, indicating that there are a few lower values pulling the mean down. This results in the mean being less than the median, as the median is less affected by extreme values. Overall, left skewed distributions show that most data points are higher than the average.

User Avatar

AnswerBot

2w ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What does a skewness of 1.27 mean?

A skewness of 1.27 indicates a distribution that is positively skewed, meaning that the tail on the right side of the distribution is longer or fatter than the left side. This suggests that the majority of the data points are concentrated on the left, with some extreme values on the right, pulling the mean higher than the median. In practical terms, this might indicate the presence of outliers or a few high values significantly affecting the overall distribution.


What direction does the tail face in a positively skewed and what direction in a negatively skewed set of data?

In a positively skewed distribution, the tail faces to the right, indicating that there are a few exceptionally high values pulling the mean upwards. Conversely, in a negatively skewed distribution, the tail faces to the left, reflecting the presence of a few exceptionally low values that pull the mean downwards. This skewness affects the relationship between the mean, median, and mode in each case.


When the median lies to the right of the mean the distribution is probably?

Positively skewed.


When population distribution is right skewed is the sampling also with right skewed distribution?

If the population distribution is roughly normal, the sampling distribution should also show a roughly normal distribution regardless of whether it is a large or small sample size. If a population distribution shows skew (in this case skewed right), the Central Limit Theorem states that if the sample size is large enough, the sampling distribution should show little skew and should be roughly normal. However, if the sampling distribution is too small, the sampling distribution will likely also show skew and will not be normal. Although it is difficult to say for sure "how big must a sample size be to eliminate any population skew", the 15/40 rule gives a good idea of whether a sample size is big enough. If the population is skewed and you have fewer that 15 samples, you will likely also have a skewed sampling distribution. If the population is skewed and you have more that 40 samples, your sampling distribution will likely be roughly normal.


What is unimodal skewed?

Unimodal skewed refers to a distribution that has one prominent peak (or mode) and is asymmetrical, meaning it is not evenly balanced around the peak. In a right (or positively) skewed distribution, the tail on the right side is longer or fatter, indicating that most data points are concentrated on the left. Conversely, in a left (or negatively) skewed distribution, the tail on the left side is longer, with most data points clustered on the right. This skewness affects the mean, median, and mode of the data, typically pulling the mean in the direction of the tail.

Related Questions

Where is all the majority of the data when the distribution is skwed right?

on the left and when it is skewed left it is on the right


What if the mean is greater than the median?

In the majority of Empirical cases the mean will not be equal to the median, so the event is hardly unusual. If the mean is greater, then the distribution is poitivelt skewed (skewed to the right).


When a population distribution is right skewed is the sampling distribution normal?

No, as you said it is right skewed.


If a great many data values cluster to the left of a data distribution which then tails off to the right the distribution is referred to as?

It is a positively skewed distribution.


What is a skewed right?

A distribution or set of observations is said to be skewed right or positively skewed if it has a longer "tail" of numbers on the right. The mass of the distribution is more towards the left of the figure rather than the middle.


Can a normal distribution curve be symmetric or left-skewed or right-skewed?

Symmetric


What is a positively skewed distribution?

A positively skewed or right skewed distribution means that the mean of the data falls to the right of the median. Picturewise, most of the frequency would occur to the left of the graph.


The shape of the F distribution is?

skewed right.


When skewed right is the mean greater than median?

When a distribution is skewed to the right, the mean is greater than median.


What does a skewness of 1.27 mean?

A skewness of 1.27 indicates a distribution that is positively skewed, meaning that the tail on the right side of the distribution is longer or fatter than the left side. This suggests that the majority of the data points are concentrated on the left, with some extreme values on the right, pulling the mean higher than the median. In practical terms, this might indicate the presence of outliers or a few high values significantly affecting the overall distribution.


When the mean of a distribution of scores of measures is higher than the median the distribution would be?

The distribution is skewed to the right.


What is skewed left?

A distribution or set of observations is said to be skewed left or negatively skewed if it has a longer "tail" of numbers on the left. The mass of the distribution is more towards the right of the figure rather than the middle.