Yes, a system can, in fact, have exactly two solutions.
No, a system of two linear equations cannot have exactly two solutions. In a two-dimensional space, two linear equations can either intersect at one point (one solution), be parallel (no solutions), or be the same line (infinitely many solutions). Therefore, it is impossible for a system of two linear equations to have exactly two solutions.
False. There can either be zero, one, or infinite solutions to a system of two linear equations.
A system of equations may have any amount of solutions. If the equations are linear, the system will have either no solution, one solution, or an infinite number of solutions. If the equations are linear AND there are as many equations as variables, AND they are independent, the system will have exactly one solution.
A system of linear equations cannot have two distinct solutions if it is consistent and defined in a Euclidean space. If two linear equations intersect at a single point, they have one solution; if they are parallel, they have no solutions. However, if the equations are dependent, meaning one equation is a multiple of the other, they represent the same line and thus have infinitely many solutions, not just two. Therefore, in standard scenarios, a system of linear equations can either have one solution, no solutions, or infinitely many solutions, but not exactly two.
A system of two linear equations in two unknowns can have three possible types of solutions: exactly one solution (when the lines intersect at a single point), no solutions (when the lines are parallel and never intersect), or infinitely many solutions (when the two equations represent the same line). Thus, there are three potential outcomes for such a system.
A system of linear equations can only have: no solution, one solution, or infinitely many solutions.
False. There can either be zero, one, or infinite solutions to a system of two linear equations.
A system of equations may have any amount of solutions. If the equations are linear, the system will have either no solution, one solution, or an infinite number of solutions. If the equations are linear AND there are as many equations as variables, AND they are independent, the system will have exactly one solution.
No. At least, it can't have EXACTLY 3 solutions, if that's what you mean. A system of two linear equations in two variables can have:No solutionOne solutionAn infinite number of solutions
As there is no system of equations shown, there are zero solutions.
if you can fart out of your chin then you know your headin in the right direction
A system of two linear equations in two unknowns can have three possible types of solutions: exactly one solution (when the lines intersect at a single point), no solutions (when the lines are parallel and never intersect), or infinitely many solutions (when the two equations represent the same line). Thus, there are three potential outcomes for such a system.
It means that there is no set of values for the variables such that all the linear equations are simultaneously true.
A.infinitely manyB.oneD.zero
Yes.
1
They are a set of equations in two unknowns such that any term containing can contain at most one of the unknowns to the power 1. A system of linear equations can have no solutions, one solution or an infinite number of solutions.