Yes, it will always be irrational.
Chat with our AI personalities
Yes. In fact, a rational plus or minus an irrational will always be irrational.
Let your sum be a + b = c, where "a" is irrational, "b" is rational, and "c" may be either (that's what we want to find out). In this case, c - b = a. If we assume that c is rational, you would have: a rational number minus a rational number is an irrational number, which can't be true (both addition and subtraction are closed in the set of rational numbers). Therefore, we have a contradiction with the assumption that "c" (the sum in the original equation) is rational.
4.5 is rational. Rational numbers are numbers that can be written as a fraction. Irrational numbers cannot be expressed as a fraction.
This can easily be proved by contradiction. Without loss of generality, I will take specific numbers as an example. The proof can easily be extended to any rational + irrational number. Assumption: 1 plus the square root of 2 is rational. (It is a well-known fact that the square root of 2 is irrational. No need to prove it here; you can use any other irrational number will do.) This rational sum can be written as p / q, where "p" and "q" are whole numbers (this is basically the definition of a "rational number"). Then, the square root of 2, which is equal to the sum minus 1, is: p / q - 1 = p / q - q / q = (p - q) / q Since the difference of two whole numbers is a whole number, this makes the square root of 2 rational, which doesn't make sense.
No - expressed as a fraction in its simplest form, -0.45 is equal to -9/20 or minus nine twentieths.