∞
It would tend towards infinity
multiply the length of the pendulum by 4, the period doubles. the period is proportional to the square of the pendulum length.
the time period of a pendulum is proportional to the square root of length.if the length of the pendulum is increased the time period of the pendulum also gets increased. we know the formula for the time period , from there we can prove that the time period of a pendulum is directly proportional to the effective length of the pendulum. T=2 pi (l\g)^1\2 or, T isproportionalto (l/g)^1/2 or, T is proportional to square root of the effective length.
time period of simple pendulum is dirctly proportional to sqare root of length...
∞
That simply means that the pendulum doesn't feel any gravity, which would make it move.
It would tend towards infinity
The time period of a simple pendulum at the center of the Earth would theoretically be zero because there is no gravitational force acting on it. A simple pendulum's period is determined by the acceleration due to gravity, which would be zero at the center of the Earth.
The time period of a simple pendulum at the center of the Earth would be almost zero. This is because there is no gravitational force acting at the center of the Earth due to a balanced pull in all directions. Thus, the pendulum would not experience any acceleration and would not oscillate.
The time period of a simple pendulum is determined by the length of the pendulum, the acceleration due to gravity, and the angle at which the pendulum is released. The formula for the time period of a simple pendulum is T = 2π√(L/g), where T is the time period, L is the length of the pendulum, and g is the acceleration due to gravity.
The period of a pendulum is the time it takes for the pendulum to complete one full swing, from its highest point to its lowest point and back. It is influenced by the length of the pendulum and the acceleration due to gravity.
Doubling the mass of a pendulum will not affect the time period of its oscillation. The time period of a pendulum depends on the length of the pendulum and the acceleration due to gravity, but not on the mass of the pendulum bob.
The time period of a pendulum is directly proportional to the square root of its length. If the length of the pendulum is increased, the time period will also increase. Conversely, if the length is decreased, the time period will decrease.
This pendulum, which is 2.24m in length, would have a period of 7.36 seconds on the moon.
The time period of a simple pendulum depends only on the length of the pendulum and the acceleration due to gravity, not the mass of the pendulum bob. This is because the mass cancels out in the equation for the time period, leaving only the factors that affect the motion of the pendulum.
The time period of a pendulum is determined by its length and gravitational acceleration. If the length of the second pendulum is one third of the original pendulum, its time period would be shorter since the time period is directly proportional to the square root of the length.