Two vectors: no. Three vectors: yes.
The general rule for adding vectors is to hook them together "head to tail" and then draw in a resultant vector. The resultant will have the magnitude and direction that represents the sum of the two vectors that were added.
It is not possible. The maximum magnitude is obtained when the vectors are aligned and in this case the resultant has a magnitude which is the sum of the individual vectors. In the given example, the maximum possible magnitude for the resultant is 16 units. In general |a+b| <= |a| + |b| where a, b are vectors and |a| is the magnitude of a
yes
Yes. If the two vectors are two sides of an equilateral triangle, then the resultant is the third side and therefore equal in magnitude.
Two vectors: no. Three vectors: yes.
No, the resultant of two equal vectors will have a magnitude that is not equal to the magnitude of the original vectors. When two vectors are added together, the resulting vector will have a magnitude that depends on the angle between the two vectors.
To combine force vectors, use vector addition. Add the x-components of the forces together to get the resultant x-component, and then do the same for the y-components. The magnitude and direction of the resultant force can be found using trigonometry.
The resultant vector is the vector that represents the sum of two or more vectors. It is calculated by adding the corresponding components of the vectors together. The magnitude and direction of the resultant vector depend on the magnitudes and directions of the individual vectors.
The general rule for adding vectors is to hook them together "head to tail" and then draw in a resultant vector. The resultant will have the magnitude and direction that represents the sum of the two vectors that were added.
Yes. A vector has magnitude and direction. If the vectors have equal magnitude and directly opposite directions their sum will be zero.
No, the resultant of two vectors of the same magnitude cannot be equal to the magnitude of either of the vectors. The magnitude of the resultant of two vectors is given by the formula: magnitude = √(A^2 + B^2 + 2ABcosθ), where A and B are the magnitudes of the vectors and θ is the angle between them.
The angle between two vectors whose magnitudes add up to be equal to the magnitude of the resultant vector will be 120 degrees. This is known as the "120-degree rule" when adding two vectors of equal magnitude to get a resultant of equal magnitude.
It is not possible. The maximum magnitude is obtained when the vectors are aligned and in this case the resultant has a magnitude which is the sum of the individual vectors. In the given example, the maximum possible magnitude for the resultant is 16 units. In general |a+b| <= |a| + |b| where a, b are vectors and |a| is the magnitude of a
Let two equal magnitude vectors be 'X'.. Then, resultant=1.414X
If their sum (resultant) is 0, then the magnitude of the resultant must be 0.
No, two vectors of unequal magnitude cannot have a sum of zero. The resultant of adding two vectors is determined both by their magnitudes and directions. If the vectors have unequal magnitudes, the resultant vector will have a magnitude that is at least as large as the larger of the two original vectors.