When solving linear prog. problems, we base our solutions on assumptions.one of these assumptions is that there is only one optimal solution to the problem.so in short NO. BY HADI It is possible to have more than one optimal solution point in a linear programming model. This may occur when the objective function has the same slope as one its binding constraints.
Yes, but only if the solution must be integral. There is a segment of a straight line joining the two optimal solutions. Since the two solutions are in the feasible region part of that line must lie inside the convex simplex. Therefore any solution on the straight line joining the two optimal solutions would also be an optimal solution.
The simplex method is an algorithm used for solving linear programming problems, which aim to maximize or minimize a linear objective function subject to linear constraints. It operates on a feasible region defined by these constraints, moving along the edges of the feasible polytope to find the optimal vertex. The method iteratively improves the solution by pivoting between basic feasible solutions until no further improvements can be made. It's widely used due to its efficiency and effectiveness in handling large-scale linear optimization problems.
No. For example, the solution to x ≤ 4 and x ≥ 4 is x = 4.
It is used in many optimization problems.
No. However, a special subset of such problems: integer programming, can have two optimal solutions.
Yes, a linear programming problem can have exactly two optimal solutions. This will be the case as long as only two decision variables are used within the problem.
When solving linear prog. problems, we base our solutions on assumptions.one of these assumptions is that there is only one optimal solution to the problem.so in short NO. BY HADI It is possible to have more than one optimal solution point in a linear programming model. This may occur when the objective function has the same slope as one its binding constraints.
An optimization problem is a mathematical problem where the goal is to find the best solution from a set of possible solutions. It can be effectively solved by using mathematical techniques such as linear programming, dynamic programming, or heuristic algorithms. These methods help to systematically search for the optimal solution by considering various constraints and objectives.
An example of the set cover problem is selecting the fewest number of sets to cover all elements in a given collection. In combinatorial optimization, this problem is typically approached using algorithms like greedy algorithms or integer linear programming to find the optimal solution efficiently.
Yes, but only if the solution must be integral. There is a segment of a straight line joining the two optimal solutions. Since the two solutions are in the feasible region part of that line must lie inside the convex simplex. Therefore any solution on the straight line joining the two optimal solutions would also be an optimal solution.
It is usually the answer in linear programming. The objective of linear programming is to find the optimum solution (maximum or minimum) of an objective function under a number of linear constraints. The constraints should generate a feasible region: a region in which all the constraints are satisfied. The optimal feasible solution is a solution that lies in this region and also optimises the obective function.
The simplex method is an algorithm used for solving linear programming problems, which aim to maximize or minimize a linear objective function subject to linear constraints. It operates on a feasible region defined by these constraints, moving along the edges of the feasible polytope to find the optimal vertex. The method iteratively improves the solution by pivoting between basic feasible solutions until no further improvements can be made. It's widely used due to its efficiency and effectiveness in handling large-scale linear optimization problems.
Philip E. Gill has written: 'Numerical linear algebra and optimization' -- subject(s): Linear Algebras, Mathematical optimization, Numerical calculations 'Practical optimization' -- subject(s): Mathematical optimization
No. For example, the solution to x ≤ 4 and x ≥ 4 is x = 4.
It is used in many optimization problems.
Shinji Mizuno has written: 'Determination of optimal vertices from feasible solutions in unimodular linear programming' -- subject(s): Accessible book