three normal distinibution body fat
Equality.
In a normal distribution the mean, median and mode are all the same value.
A normal distribution of data is one in which the majority of data points are relatively similar, meaning they occur within a small range of values with fewer outliers on the high and low ends of the data range. When data are normally distributed, plotting them on a graph results a bell-shaped and symmetrical image often called the bell curve. In such a distribution of data, mean, median, and mode are all the same value and coincide with the peak of the curve. However, in social science, a normal distribution is more of a theoretical ideal than a common reality. The concept and application of it as a lens through which to examine data is through a useful tool for identifying and visualizing norms and trends within a data set. Properties of the Normal Distribution One of the most noticeable characteristics of a normal distribution is its shape and perfect symmetry. If you fold a picture of a normal distribution exactly in the middle, you'll come up with two equal halves, each a mirror image of the other. This also means that half of the observations in the data falls on either side of the middle of the distribution. The midpoint of a normal distribution is the point that has the maximum frequency, meaning the number or response category with the most observations for that variable. The midpoint of the normal distribution is also the point at which three measures fall: the mean, median, and mode. In a perfectly normal distribution, these three measures are all the same number. In all normal or nearly normal distributions, there is a constant proportion of the area under the curve lying between the mean and any given distance from the mean when measured in standard deviation units. For instance, in all normal curves, 99.73 percent of all cases fall within three standard deviations from the mean, 95.45 percent of all cases fall within two standard deviations from the mean, and 68.27 percent of cases fall within one standard deviation from the mean. Normal distributions are often represented in standard scores or Z scores, which are numbers that tell us the distance between an actual score and the mean in terms of standard deviations. The standard normal distribution has a mean of 0.0 and a standard deviation of 1.0. Examples and Use in Social Science Even though a normal distribution is theoretical, there are several variables researchers study that closely resemble a normal curve. For example, standardized test scores such as the SAT, ACT, and GRE typically resemble a normal distribution. Height, athletic ability, and numerous social and political attitudes of a given population also typically resemble a bell curve. The ideal of a normal distribution is also useful as a point of comparison when data are not normally distributed. For example, most people assume that the distribution of household income in the U.S. would be a normal distribution and resemble the bell curve when plotted on a graph. This would mean that most U.S. citizens earn in the mid-range of income, or in other words, that there is a healthy middle class. Meanwhile, the numbers of those in the lower economic classes would be small, as would the numbers in the upper classes. However, the real distribution of household income in the U.S. does not resemble a bell curve at all. The majority of households fall into the low to the lower-middle range, meaning there are more poor people struggling to survive than there are folks living comfortable middle-class lives. In this case, the ideal of a normal distribution is useful for illustrating income inequality.
By standard practice, the normal distribution curve should be normalized so that the area under the curve is 1. This results in a height, at the mean, of about 0.4, i.e. the probability of a sample value being equal to the mean is 40 percent. The width of the normal distribution curve is infinite, as the tails are asymptotic to the X axis. It is easier to understand that the +/- one sigma area is 68.2 percent, the +/- two sigma area is 95.4 percent, and the +/- three sigma area is 99.6 percent.
three normal distinibution body fat
intensive distribution, exclusive distribution, and selective distribution.
Equality.
1. Fat helps obtain some of the body's energy. 2. Fat helps surround and protect vulnerable organs in the body. 3. Fat helps keep warmth for the body during cold temperatures. HOPE THIS ANSWERS YOUR QUESTION
Three important characteristiccs of a population are its geographic distribution, density, and growth rate.
i dont reall know it i need help as well so answer it... :)
The three types of spatial distribution are uniform distribution (evenly spaced), random distribution (no pattern), and clustered distribution (grouped together).
1.it is bell shaped.2.m.d=0.7979 of s.d 3.total area under the normal curve is equal to 1.
in a normal distribution, the mean plus or minus one standard deviation covers 68.2% of the data. If you use two standard deviations, then you will cover approx. 95.5%, and three will earn you 99.7% coverage
There are three benefits of specialization. The three benefits are cost, skill and host.
The three major types of faults are normal faults, reverse faults, and strike-slip faults. Synclines are not faults but rather geological structures that describe the folding of rock layers.
i have no idea at all. Hate this subject.