True when they are in the form of rectangles.
Chat with our AI personalities
To determine which statement is not true for all parallelograms, let's review the properties of parallelograms in general. A parallelogram is a quadrilateral with the following properties: Opposite sides are parallel. Opposite sides are equal in length. Opposite angles are equal. Consecutive angles are supplementary (i.e., their sum is 180 degrees). Diagonals bisect each other (each diagonal cuts the other into two equal parts). Given these properties, we can formulate some statements about parallelograms and identify which one is not universally true. Here are a few statements, with one being false: Opposite sides of a parallelogram are parallel. Opposite angles of a parallelogram are equal. The diagonals of a parallelogram are equal in length. The diagonals of a parallelogram bisect each other. Analysis: **Statement 1** is true: By definition, opposite sides of a parallelogram are parallel. **Statement 2** is true: Opposite angles in a parallelogram are equal. **Statement 4** is true: The diagonals of a parallelogram bisect each other. Statement 3: The diagonals of a parallelogram are equal in length This statement is **not true for all parallelograms**. It is only true for special types of parallelograms such as rectangles and squares, where the diagonals are equal. In a general parallelogram, the diagonals are not necessarily of equal length. Thus, the statement **"The diagonals of a parallelogram are equal in length"** is not true for all parallelograms.
They do in some parallelograms, not in others.
That is true for some parallelograms but not all. For example, the diagonals of a rhombus, kite or square are perpendicular, but those of a rectangle or general parallelogram are not.
Some parallelograms are squares - the ones which are equiangular (have equal angles) and are equilateral (have equal side lengths). All squares are parallelograms, but only some parallelograms are squares.
yes. rectangles are just the special cases of parallelograms where the angles are all 900