Yes and sometimes the two solutions are equal
Chat with our AI personalities
A quadratic equation can have two real solutions, one real solution, or two complex solutions, none of them real.
No. By definition, a quadratic equation can have at most two solutions. For a quadratic of the form ax^2 + bx + c, when the discriminant of a quadratic, b^2 - 4a*c is positive you have two distinct real solutions. As the discriminant becomes smaller, the two solutions move closer together. When the discriminant becomes zero, the two solutions coincide which may also be considered a quadratic with only one solution. When the discriminant is negative, there are no real solutions but there will be two complex solutions - that is those involving i = sqrt(-1).
There are several ways to solve such equations: (1) Write the equation in the form polynomial = 0, and solve the left part (where I wrote "polynomial"). (2) Completing the square. (3) Use the quadratic formula. Method (3) is by far the most flexible, but in special cases methods (1) and (2) are faster to solve.
They are a set of equations in two unknowns such that any term containing can contain at most one of the unknowns to the power 1. A system of linear equations can have no solutions, one solution or an infinite number of solutions.
Well, that depends on what you mean "solve by factoring." For any quadratic equation, it is possible to factor the quadratic, and then the roots can be recovered from the factors. So in the very weak sense that every quadratic can be solved by a method that involves getting the factors and recovering the roots from them, all quadratic equations can be solved by factoring. However, in most cases, the only way of factoring the quadratic in the first place is to first find out what its roots are, and then use the roots to factor the quadratic (any quadratic polynomial can be factored as k(x - r)(x - s), where k is the leading coefficient of the polynomial and r and s are its two roots), in which case trying to recover the roots from the factors is redundant (since you had to know what the roots were to get the factors in the first place). So to really count as solving by factoring, it makes sense to require that the solution method obtains the factors by means that _don't_ require already knowing the roots of the polynomial. And in this sense, most quadratic equations are not solvable through factoring.