answersLogoWhite

0

Yes.

According to Euclid's 5th postulate, when n line falls on l and m and if

, producing line l and m further will meet in the side of ∠1 and ∠2 which is less than

If

The lines l and m neither meet at the side of ∠1 and ∠2 nor at the side of ∠3 and ∠4. This means that the lines l and m will never intersect each other. Therefore, it can be said that the lines are parallel.

User Avatar

Toy Kiehn

Lvl 9
2y ago

Still curious? Ask our experts.

Chat with our AI personalities

JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa

Add your answer:

Earn +20 pts
Q: Does Euclid's fifth postulate imply the existence of parallel lines?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

If there is a line and a point not on the line then there is exactly lines trough the point parallel to the given line?

This is Euclid's fifth postulate, also known as the Parallel Postulate. It is quite possible to construct consistent systems of geometry where this postulate is negated - either many parallel lines or none.


What are different ideas about geometry?

The main different ideas are based on Euclid's fifth postulates, more commonly known as the parallel postulate. Unlike his other postulates which are simple and self-evident, the parallel postulate is not.Along with the other postulates, the Fifth postulate is equivalent to the assertion that given a straight line and a point not on that line, there is exactly one line which goes through the given point and is parallel to the given line. A consistent geometry can be developed from these axioms.However, it is also possible to develop wholly consistent geometries with either of the two alternatives to the parallel postulate. One is that no such parallel lines exist and this gives rise to affine or projective geometries. The other is that there are more than one parallel lines and this gives rise to elliptic geometry.


What is the major premise that separates Euclidean geometry from other non-Euclidean geometries?

It is Euclid's fifth postulate which is better known as the parallel postulate. It appears in very many equivalent forms but basically it states that: given a line and a point that is not on that line, there is at most one line which passes through that point and which is parallel to the original line.


What are the postulate involving points lines and plane?

Euclid's first four postulates are:A straight line segment can be drawn joining any two points.Any straight line segment can be extended indefinitely in a straight line.Given any straight line segment, a circle can be drawn havibg the segment as radius and one endpoint as centre.All right angles are congruent. He also had the fifth postulate, equivalent to the parallel postulate. There are various equivalent versions.If two lines are drawn which intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines inevitably must intersect each other on that side, if extended far enough.The fifth postulate cannot be proven and, in fact, it is now known that it cannot be proven and that there are many internally-consistent geometries in which the negations of this postulate are true.


Which postulates led to the discovery of non-Euclidean geometry?

Adding to what Anand Mehta said, the negation of that statement has two interpretations. (i) there are zero lines through that point that are parallel to the given line (this is called Elliptic or Reimannian Geometry) (ii) there is an infinite number of lines that pass through the point and parallel to a given line (this is called Hyperbolic or Lobachevskian Geometry) I might add that the study of non-Euclidean Geometries are absolutely fascinating.