A planet with a greater mass does not necessarily have greater surface area than one with less mass. The planet could be made of denser material and have a smaller surface area. Mass doesn't always mean volume.
Chat with our AI personalities
Mass does not directly affect surface area. Surface area is a measure of the total area of an object's external surfaces, while mass is a measure of the amount of matter in an object. However, as the mass of an object increases, its volume typically increases as well, which can indirectly affect its surface area if the shape remains constant. Objects with larger masses may have larger surface areas if their volume increases proportionally.
By area - its the 4rd largest land mass.
Consider this:If a cube has side length d, then its volume is d3 and its surface area is 6d2.If I cut the cube into 8 smaller cubes by bisecting each edge, then the new side length is d/2, the sum of the volume is 8 * ((d/2)3) = d3, and the surface area is 8 * (6(d/2)2) = 12d2.Therefore, even though the volume stayed constant, the sum of the surface area increased when I cut a larger cube into small cubes. The increase in surface area will be larger and larger as the cube is cut into smaller and smaller pieces. Therefore a sugar cube always has less surface area than an equal mass of sugar crystals.Granulated sugar has more surface area than a sugar cube.
Surface area is a factor in the efficiency of heat exchange. A greater surface to mass ratio creates a faster transfer of heat. This is why the heat sink on your CPU has the multiple bars that increase its surface area. If it was just a solid cube (or worse yet a sphere), it would not have nearly the potential to remove heat from the CPU. Other factors in heat loss or dissipation include temperature differential, humidity, air circulation, and the chemical composition of the materials used.
It depends on what you mean by size: its length, volume, surface area or even its mass.