A rectangle Written by GREYBAT
Yes. A square has rotational symmetry of order 4.
A square
A square has rotational symmetry to the order of 4
Yes and each of its 4 interior angles are at 90 degrees
The rectangle's rotational symmetry is of order 2. A square's rotational symmetry is of order 4; the triangle has a symmetry of order 3. Rotational symmetry is the number of times a figure can be rotated and still look the same as the original figure.
A rectangle Written by GREYBAT
if you mean rotational symmetry then yes, rotational symmetry of order 4
It has rotational symmetry of degree 2 or, if it happens to be a square, of degree 4.
Yes. A square has rotational symmetry of order 4.
A square
4
it is 4
The square has 4 sides and has rotational symmetry of order 4.
A square has rotational symmetry to the order of 4
Yes and each of its 4 interior angles are at 90 degrees
When a shape is rotated about its centre, if it comes to rest in a position and looks exactly like the original, then it has rotational symmetry. A shape like an equilateral triangle would therefore have an order of rotational symmetry of 3. The general rule for a regular polygon (shapes such as pentagons, heptagons, octagons etc. is, that the number of sides is the same as the number of lines of symmetry, which is also the same as the rotational symmetry order). This means that a regular hexagon has 6 sides, 6 lines of symmetry and an order of rotational symmetry of 6. Following from this, then a square, which is a regular polygon, has 4 sides, 4 lines of symmetry and an order of rotational symmetry of 4. If a shape has rotational symmetry, it must have either line symmetry or point symmetry or both. For example, a five pointed star has 5 lines of symmetry and rotational symmetry of order 5, but does not have point symmetry. A parallelogram has no line of symmetry, but has rotational symmetry of order 2 and also point symmetry. Only a shape which has line symmetry or point symmetry can have rotational symmetry. When there is point symmetry and also rotational symmetry, the order of the latter is even. For example, the letter 'S' has rotational symmetry of order 2, the regular hexagon of order 6. On this basis, we would suggest that the letter 'F' does not have a rotational symmetry order as it does not have either line symmetry or point symmetry. It doesn't have a centre around which you could rotate it. Sounds weird, but given the definitions, we think this is the case.