Q: Does an isosceles trapezoid have all congruent sides?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

By definition, all trapezoids must have one pair of parallel sides. Therefore, an isosceles has one pair of congruent angles.

Yes but the parallel bases are of different lengths

No because only 2 of its 3 sides are congruent in an isosceles triangle but all 3 sides of an equilateral triangle are congruent.

no

iscosolese triangle: 2 congruent sides and one that is not congruent Scalene: all un congruent equaladeral: all congruent

Related questions

False

By definition, all trapezoids must have one pair of parallel sides. Therefore, an isosceles has one pair of congruent angles.

Yes but the parallel bases are of different lengths

By definition, a trapezoid only must have exactly one pair of parallel sides. An isosceles trapezoid does have one pair of congruent sides, but not all trapezoids will have exactly one pair of congruent sides.

Only if it is an isosceles trapezoid otherwise no.

No because only 2 of its 3 sides are congruent in an isosceles triangle but all 3 sides of an equilateral triangle are congruent.

no

A trapezium with all its sides congruent is an impossible shape.

No, a trapezoid can't have all congruent sides because then it would be a square. A trapezoid by definition has one pair of parallel sides of different lengths.

In an isosceles triangle 2 sides are congruent and 2 angles are congruent. In an equilateral triangle all 3 sides are congruent and all 3 angles are congruent also.

Only if it's an isosceles trapezoid otherwise all trapezoids have exactly one pair of parallel sides that are of different lengths

Isosceles Triangle Isosceles TriangleIsosceles triangles have at least 2 congruent sides, and equilateral triangles have all 3 sides equal. A scalene triangle has no congruent sides or angles. All triangles have 180 degrees total.An equilateral triangle has three congruent sides and an isosceles triangle has two congruent sides.