Yes, and for any non-zero rational x, the multiplicative inverse is 1/x.
Yes. The multiplicative identity for the rational numbers is 1 (also can be written as 1/1).
Yes, it is 1.
In a set S, the multiplicative inverse of a non-zero element x is an element of the set, y, such that x*y = y*x = i, the identity element of S. For the set of numbers, the multiplicative identity is 1 and the multiplicative identity is also denoted by 1/x or x^-1.
Yes.
Assuming that you mean pi, and not pie, it is not a rational number.The set of rational numbers is a field and this means that for every non-zero rational number, there exists a multiplicative inverse in the setand also, due to closure, the product of any two rational numbers is a rational number.Now suppose 7*pi were rational.7 is rational and so there is its multiplicative inverse, which is (1/7).(1/7) is also rational so (1/7)*(7*pi) is rationalBut by the associative property, this is (1/7*7)*pi = 1*pi = pi.But it has been proven that pi is irrational. Therefore the supposition must be wrong ie 7*pi is not rational.
help me
All rational numbers, with the exception of zero (0), have a multiplicative inverse. In fact, all real numbers (again, except for zero) have multiplicative inverses, though the inverses of irrational numbers are themselves irrational. Even imaginary numbers have multiplicative inverses (the multiplicative inverse of 5i is -0.2i - as you can see the inverse itself is also imaginary). Even complex numbers (the sum of an imaginary number and a real number) have multiplicative inverses (the inverse of [5i + 2] is [-5i/29 + 2/29] - similar to irrational and imaginary numbers, the inverse of a complex number is itself complex). The onlynumber, in any set of numbers, that does not have a multiplicative inverse is zero.
Yes. The multiplicative identity for the rational numbers is 1 (also can be written as 1/1).
Yes, it is 1.
In a set S, the multiplicative inverse of a non-zero element x is an element of the set, y, such that x*y = y*x = i, the identity element of S. For the set of numbers, the multiplicative identity is 1 and the multiplicative identity is also denoted by 1/x or x^-1.
On the set of all real numbers ZERO has no multiplicative inverse. For other sets there may be other numbers too, so please define your set!
The multiplicative identity is a property of a set of numbers, not of an individual number in the set. 1 is the multiplicative identity for the set of all integers, rationals or reals etc. Individual elements of the set do have a multiplicative INVERSE and for 2, this is 1/2 or 0.5
The multiplicative inverse of an element x (in a set S) is an element, y, of the set such that x*y = y*x = 1 where 1 is the multiplicative identity. y is denoted by x^(-1). For the set of numbers, the inverse of x is 1/x.
Yes.
Assuming that you mean pi, and not pie, it is not a rational number.The set of rational numbers is a field and this means that for every non-zero rational number, there exists a multiplicative inverse in the setand also, due to closure, the product of any two rational numbers is a rational number.Now suppose 7*pi were rational.7 is rational and so there is its multiplicative inverse, which is (1/7).(1/7) is also rational so (1/7)*(7*pi) is rationalBut by the associative property, this is (1/7*7)*pi = 1*pi = pi.But it has been proven that pi is irrational. Therefore the supposition must be wrong ie 7*pi is not rational.
The set of non-zero rational numbers contains multiplication inverses for all its elements. For any non-zero rational number ( a/b ) (where ( a ) and ( b ) are integers and ( b \neq 0 )), the multiplicative inverse is ( b/a ). This means that for every element in this set, there exists another element in the same set that, when multiplied together, equals 1.
No. It has a different additive inverses for each element.