NO
No. It is the same as when you subtract normal numbers. a - b is not the same as b - a. However, if you convert the subtraction to an addition, you can use the commutative law - both with normal subtraction and with vector subtraction. That is, a - b, which can be written as a + (-b), is the same as -b + a.
Addition does. Subtraction, just as with numbers: a - b is not equal to b - a, but you can change a - b to -b + a.Addition does. Subtraction, just as with numbers: a - b is not equal to b - a, but you can change a - b to -b + a.Addition does. Subtraction, just as with numbers: a - b is not equal to b - a, but you can change a - b to -b + a.Addition does. Subtraction, just as with numbers: a - b is not equal to b - a, but you can change a - b to -b + a.
The law is used to add vectors to find the resultant of two or more vectors acting at a point.
ya they just accidentally said law of vectors instead.
Yes.
no the answer is no because you can fine a-b and b-a individually but in general they are not equal By Habib
NO
No. It is the same as when you subtract normal numbers. a - b is not the same as b - a. However, if you convert the subtraction to an addition, you can use the commutative law - both with normal subtraction and with vector subtraction. That is, a - b, which can be written as a + (-b), is the same as -b + a.
Addition does. Subtraction, just as with numbers: a - b is not equal to b - a, but you can change a - b to -b + a.Addition does. Subtraction, just as with numbers: a - b is not equal to b - a, but you can change a - b to -b + a.Addition does. Subtraction, just as with numbers: a - b is not equal to b - a, but you can change a - b to -b + a.Addition does. Subtraction, just as with numbers: a - b is not equal to b - a, but you can change a - b to -b + a.
The cross product of two vectors is defined as a × b sinθn Where the direction of Cross product is given by the right hand rule of cross product. According to which stretch the forefinger of the right hand in the direction of a and the middle finger in the direction of b. Then, the vector n is coming out of the thumb will represent the direction. As direction of a × b is not same to b × a. So it does not obey commutative law.
That follows directly from the addition of vectors by components - here you are adding real numbers, so the commutative law applies.
Subtraction is commutative... in a way. You can convert any subtraction to an addition. 7 - 2 is NOT the same as 2 - 7. However, when turning the terms around, you may keep the sign, so that 7 - 2 is the same as -2 + 7. This is justified by the commutative law of addition. Similarly with division: 10 / 2 is not the same as 2 / 10, but you can convert 10 / 2 into (1/2) x 10.
law of vectors also include the parallellogram law .
The term commutative group is used as a noun in sentences. A commutative group is a group that satisfies commutative law in mathematics. Commutative law states that we can swap numbers of problem when adding or multiplying.
Commutative law: The order of the operands doesn't change the result. For example, 4 + 3 = 3 + 4. Associative: (1 + 2) + 3 = 1 + (2 + 3) - it doesn't matter which addition you do first. Both laws are valid for addition, and for multiplication (as these are usually defined, with numbers. However, special "multiplications" have been defined that are not associative, or not commutative - for example, the cross product of vectors, or multiplication of matrices are not commutative.
Commutative Law: a + b = b + a Associative Law: (a + b) + c = a + (b + c)