A function must be well defined. This means that every element in the domain maps to only one element in the range. In more math terms, let a and b be in the domain of f such that a = b. If f is a function, then if a = b, f(a) = f(b).
A relation does not need to be well defined. An example of this would be y^2 = 4. y = 2 or -2.
An ordered pair that would be part of a relation but not a function would be (x, y^2) vs an ordered pair possible in a function which would be (x^2, y).
Not every relation is a function. But every function is a relation. Function is just a part of relation.
An example of a relation that is not a function is the relation defined by the set of points {(1, 2), (1, 3), (2, 4), (3, 5)}. In this relation, the input value 1 corresponds to two different output values (2 and 3), violating the definition of a function, which states that each input must have exactly one output. Therefore, since one input maps to multiple outputs, this relation is not a function.
A function is a relation whose mapping is a bijection.
If a relation can be called a function, it means that the relation maps every element to one and only one other element. If you have some ordered pairs and see that, for example, 1 maps to 4 (1,4) and 1 also maps to 7 (1,7) , you don't have a function.
No. A relation is not a special type of function.
Not every relation is a function. But every function is a relation. Function is just a part of relation.
An example of a relation that is not a function is the relation defined by the set of points {(1, 2), (1, 3), (2, 4), (3, 5)}. In this relation, the input value 1 corresponds to two different output values (2 and 3), violating the definition of a function, which states that each input must have exactly one output. Therefore, since one input maps to multiple outputs, this relation is not a function.
No, a function must be a relation although a relation need not be a functions.
Does the graph above show a relation, a function, both a relation and a function, or neither a relation nor a function?
A function is a relation whose mapping is a bijection.
yes.
If a relation can be called a function, it means that the relation maps every element to one and only one other element. If you have some ordered pairs and see that, for example, 1 maps to 4 (1,4) and 1 also maps to 7 (1,7) , you don't have a function.
Not every relation is a function. A function is type of relation in which every element of its domain maps to only one element in the range. However, every function is a relation.
No. A relation is not a special type of function.
A relation is a mapping from one set to another. It is a function if elements of the first set are mapped to only one element from the second set. So, for example, square root is not a function because 9 can be mapped to -3 and 3.
A relation is a function if every input has a distinct output.
y² = x --> y = ±√x Because there are *two* square roots for any positive number (positive and negative) this will not be a function.