The set of real numbers is denoted by R. There is only one such set.
Chat with our AI personalities
Some examples of sets of real numbers include:
Many infinite sets appear in mathematics: the set of counting numbers; the set of integers; the set of rational numbers; the set of irrational numbers; the set of real numbers; the set of complex numbers. Also, certain subsets of these, such as the set of square numbers, the set of prime numbers, and others.
In a certain sense, the set of complex numbers is "larger" than the set of real numbers, since the set of real numbers is a proper subset of it.
Real numbers are a proper subset of Complex numbers.
Are disjoint and complementary subsets of the set of real numbers.
There are lots of subsets; some of the ones that are commonly used are: rational numbers; irrational numbers; positive numbers; negative numbers; non-negative numbers; integers; natural numbers. Remember that a subset simply means a set that is contained in another set. It may even be the same set. So the real numbers are a subset of themselves. The number {3} is a subset of the reals. All the examples above are subsets as well. The set {0,1, 2+i, 2-i} is NOT a subset of the real numbers. The real numbers are a subset of the complex numbers.