Unfortunately, limitations of the browser used by Answers.com means that we cannot see most symbols. It is therefore impossible to give a proper answer to your question. Please resubmit your question spelling out the symbols as "plus", "minus", "times", "equals", "squared", "cubed" etc. Please use "brackets" (or parentheses) because it is impossible to work out whether x plus y squared is x + y^2 of (x + y)^2.
The derivative of 2^x is 2^x * ln2 so the derivative of 2^cosx * ln2 multiplied by d/dx of cox, which is -sinx so the derivative of the inside function is -sinx * 2^cosx *ln2. As to the final question, using the chain rule, d/dx (2^cosx)^0.5 will equal half of (2^cosx)^-0.5 * -sinx * 2^cosx * ln2
(6 Cosx)2
2
(1-cosx)/sinx + sinx/(1- cosx) = [(1 - cosx)*(1 - cosx) + sinx*sinx]/[sinx*(1-cosx)] = [1 - 2cosx + cos2x + sin2x]/[sinx*(1-cosx)] = [2 - 2cosx]/[sinx*(1-cosx)] = [2*(1-cosx)]/[sinx*(1-cosx)] = 2/sinx = 2cosecx
2
I suggest you calculate the first 2 or 3 derivatives, and see whether you can find a pattern.
(cosx)^2-(sinx)^2
The derivative of 2^x is 2^x * ln2 so the derivative of 2^cosx * ln2 multiplied by d/dx of cox, which is -sinx so the derivative of the inside function is -sinx * 2^cosx *ln2. As to the final question, using the chain rule, d/dx (2^cosx)^0.5 will equal half of (2^cosx)^-0.5 * -sinx * 2^cosx * ln2
(6 Cosx)2
take out the constant -2 then take the intergral of cosx this will give you sinx your answer is -2sinx
2
tanx=2cscx sinx/cosx=2/sinx sin2x/cosx=2 sin2x=2cosx 1-cos2x=2cosx 0=cos2x+2cosx-1 Quadratic formula: cosx=(-2±√(2^2+4))/2 cosx=(-2±√8)/2 cosx=(-2±2√2)/2 cosx=-1±√2 cosx=approximately -2.41 or approximately 0.41. Since the range of the cosine function is [-1,1], only approx. 0.41 works. So: cosx= approx. 0.41 Need calculator now (I went as far as I could without one!) x=approx 1.148
(1-cosx)/sinx + sinx/(1- cosx) = [(1 - cosx)*(1 - cosx) + sinx*sinx]/[sinx*(1-cosx)] = [1 - 2cosx + cos2x + sin2x]/[sinx*(1-cosx)] = [2 - 2cosx]/[sinx*(1-cosx)] = [2*(1-cosx)]/[sinx*(1-cosx)] = 2/sinx = 2cosecx
2sinxcosx-cosx=0 Factored : cosx(2sinx-1)=0 2 solutions: cosx=0 or sinx=.5 For cosx=0, x=90 or 270 degrees For sinx=.5, x=30 degrees x = {30, 90, 270}
2
The first deriviative of sin(x) is cos(x), which is also sin(x + pi/2). The general formula, then for the nth deriviative of sin(x) is sin(x + n pi/2).
2 x 2 = 4. 4 is a constant. The derivative of a constant is always 0. Therefore, The derivative of 2 x 2 is zero.