6x+5b+3, see related link for a thorough explanation of what a polynomial is.
A "root" of a polynomial is any value which, when replaced for the variable, results in the polynomial evaluating to zero. For example, in the polynomial x2 - 9, if you replace "x" by 3, or by -3, the resulting expression is equal to zero.
The term in a polynomial without a variable is called a "constant term." It represents a fixed value and does not change with the variable(s) in the polynomial. For example, in the polynomial (2x^2 + 3x + 5), the constant term is 5.
fundamental difference between a polynomial function and an exponential function?
The degree of a polynomial is identified by determining the highest exponent of the variable in the polynomial's expression. For example, in the polynomial (2x^3 + 4x^2 - x + 5), the highest exponent is 3, so the degree is 3. If the polynomial is a constant (like 5), its degree is 0, and if it's the zero polynomial, it's often considered to have no degree.
Assuming you mean a fourth degree polynomial,P4 = x4 + 1P3 = x3 + 1P4*P3 = x7 + x4 + x3 + 1 is a seventh degree polynomial.
In the 1880s, Poincaré created functions which give the solution to the order polynomial equation to the order of the polynomial equation
The smallest is 0: the polynomial p(x) = 3, for example.
An example of a polynomial with 3 terms is 3x3 + 4x + 20, because there are 3 different degrees of x in the polynomial.
3x2 - 2x + 3
you foil it out.... for example take the first number or variable of the monomial and multiply it by everything in the polynomial...
an example of a three-term polynomial is: Ax2 + Bx + C. (that's Ax{squared})
That means that you divide one polynomial by another polynomial. Basically, if you have polynomials "A" and "B", you look for a polynomial "C" and a remainder "R", such that: B x C + R = A ... such that the remainder has a lower degree than polynomial "B", the polynomial by which you are dividing. For example, if you divide by a polynomial of degree 3, the remainder must be of degree 2 or less.
A "root" of a polynomial is any value which, when replaced for the variable, results in the polynomial evaluating to zero. For example, in the polynomial x2 - 9, if you replace "x" by 3, or by -3, the resulting expression is equal to zero.
The term in a polynomial without a variable is called a "constant term." It represents a fixed value and does not change with the variable(s) in the polynomial. For example, in the polynomial (2x^2 + 3x + 5), the constant term is 5.
fundamental difference between a polynomial function and an exponential function?
The link to the left will give you the basics.
The degree of a polynomial is identified by determining the highest exponent of the variable in the polynomial's expression. For example, in the polynomial (2x^3 + 4x^2 - x + 5), the highest exponent is 3, so the degree is 3. If the polynomial is a constant (like 5), its degree is 0, and if it's the zero polynomial, it's often considered to have no degree.