Is your question regarding examples of exponential decay?
let's see, the best known examples of exponential decay involves radioactive materials such as uranium or plutonium. Another example, if inflation is making prices rise by 3% per year, then the value of a $1 bill is falling or exponentially decaying, by 3% per year.
new value=initial value x (1-r)^t where t =time and r =rate/100
Example: China's One-Child Policy was implemented in 1978 with a goal of reducing China's population to 700 million by 2050. China's 2000 population is about 1.2 billion. Suppose that China's population declines at a rate of 0.5% per year. Will this rate be sufficient to meet the original goal?
plug in the numbers for the equation: new value=1.2billionx(1-0.005)^50
new value=0.93 billion
hope this helps! Please check out more exponential decay examples in the links! =)
Chat with our AI personalities
Exponential growth is when the amount of something is increasing, and exponential decay is when the amount of something is decreasing.
They are incredibly different acceleration patterns. Exponential growth is unbounded, whereas exponential decay is bounded so as to form a "dynamic equilibrium." This is why exponential decay is so typical of natural processes. To see work I have done in explaining exponential decay, go to the page included in the related links.
Exponential growth goes infinitely up. Exponential decay goes infinitely over always getting closer to the x axis but never reaching it. ADDED: An exponential decay trace's flat-looking region has its own special name: an "asymptote".
It can be growth or decay - it depends on whether n is positive (growth) or negative (decay).
If the exponent has the variable of time in it, then it will be either exponential growth (such as compound interest for example), or exponential decay (such as radioactive materials, or a capacitor discharging). If the time constant (coefficient of the time variable) is positive then it is growth, if the time constant is negative, then it is decay.