answersLogoWhite

0

There is no reason for the surface area to remain the same even if the volume is the same.

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan

Add your answer:

Earn +20 pts
Q: How are volume and surface area the same when volume stays the same?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Is the volume of a cylinder the same as the surface area of a cylinder?

no


Is it possible to have the same surface area different volume?

yes.


How is it possible for objects to have the same volume but different area?

Yes. A cube that is 2x2x2 has the same volume as a rectangular prism that is 1x2x4, which is 8. The surface area of the cube is 24 while the surface area of the rectangular prism is 28.


How are volume and surface area the same?

Volume and surface area can never be the same because volume is a measure in 3-dimensional space whereas area is a measure in 2-dimensional space. The dimensions are different and so equality is not possible.Volume and surface area can never be the same because volume is a measure in 3-dimensional space whereas area is a measure in 2-dimensional space. The dimensions are different and so equality is not possible.Volume and surface area can never be the same because volume is a measure in 3-dimensional space whereas area is a measure in 2-dimensional space. The dimensions are different and so equality is not possible.Volume and surface area can never be the same because volume is a measure in 3-dimensional space whereas area is a measure in 2-dimensional space. The dimensions are different and so equality is not possible.


Surface-area-to-volume ratio in nanoparticles?

Surface area to volume ratio in nanoparticles have a significant effect on the nanoparticles properties. Firstly, nanoparticles have a relative larger surface area when compared to the same volume of the material. For example, let us consider a sphere of radius r: The surface area of the sphere will be 4πr2 The volume of the sphere = 4/3(πr3) Therefore the surface area to the volume ratio will be 4πr2/{4/3(πr3)} = 3/r It means that the surface area to volume ration increases with the decrease in radius of the sphere and vice versa.