answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: How can a converse problem be false?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the converse of If a number is a whole number then it is an integer?

"If a number is an integer, then it is a whole number." In math terms, the converse of p-->q is q-->p. Note that although the statement in the problem is true, the converse that I just stated is not necessarily true.


Each conditional is true Write its converse If the converse is also true combine the statements as a biconditional If 2x plus 12 equals 16 then x equals 2?

This problem is a copyright violation of the curriculum used by Connections Academy, an online charter school. Students who use this problem and its answers on this website are cheating on their math test. Please remove this problem from your website.


In an addition problem the answer should have the same number of significant figures as the measurement with the most decimal places true or false?

False


If a statement is true is it converse also true?

Not necessarily. If the statement is "All rectangles are polygons", the converse is "All polygons are rectangles." This converse is not true.


What is a non mathematical statement that has a false conditional statement with a converse that is true?

Well, honey, let me break it down for you. How about this gem: "If it's raining, then the grass is wet." The conditional statement is false because the grass could be wet for other reasons. But flip it around and you've got yourself a true converse: "If the grass is wet, then it's raining." Just like that, a little logic twist for your day.

Related questions

is this statement true or falseThe inverse is the negation of the converse.?

false


If a triangle is equilateral then it is isosceles What is the converse of the statement?

If a triangle is isosceles, then it is equilateral. To find the converse of a conditional, you switch the antecedent ("If ____ ...") and consequent ("... then ____."). (Of course, if not ALL isosceles triangles were equilateral, then the converse would be false.)


To begin an indirect proof you assume the converse of what you intend to prove is true?

false


What is an example of a false statement that has a true converse?

All four-sided polygons are squares. (False) Squares are all four-sided polygons. (True)


Is this statement true or falseThe Converse of the Hinge Theorem can be used to determine exact measures of angles?

false


Is the Converse of a false statement always false?

Let's take an example.If it is raining (then) the match will be cancelled.A conditional statement is false if and only if the antecedent (it is raining) is true and the consequent (the match will be cancelled) is false. Thus the sample statement will be false if and only if it is raining but the match still goes ahead.By convention, if the antecedent is false (if it isn't raining) then the statement as a whole is considered true regardless of whether the match takes place or not.To recap: if told that the sample statement is false, we can deduce two things: It is raining is a true statement, and the match will be cancelled is a false statement. Also, we know a conditional statement with a false antecedent is always true.The converse of the statement is:If the match is cancelled (then) it is raining.Since we know (from the fact that the original statement is false) that the match is cancelled is false, the converse statement has a false antecedent and, by convention, such statements are always true.Thus the converse of a false conditional statement is always true. (A single example serves to show it's true in all cases since the logic is identical no matter what specific statements you apply it to.)If you are familiar with truth tables, the explanation is much easier. Here is the truth table for A = X->Y (i.e. A is the statement if X then Y) and B = Y->X (i.e. B is the converse statement if Y then X).X Y A BF F T TF F T TT F F TF T T FLooking at the last two rows of the A and B columns, when either of the statements is false, its converse is true.


What is the converse of the contrapositive of a statement?

Look at the statement If 9 is an odd number, then 9 is divisible by 2. The first part is true and second part is false so logically the statement is false. The contrapositive is: If 9 is not divisible by 2, then 9 is not an odd number. The first part is true, the second part is false so the statement is true. Now the converse of the contrapositive If 9 is not an odd number, then 9 is not divisible by two. The first part is false and the second part is true so it is false. The original statement is if p then q,the contrapositive is if not q then not p and the converse of that is if not p then not q


What is a Converse statement?

A converse statement is a statement is switched to make the statement true or false. For example, "If it is raining, then we will not go to the beach" would be changed to, "If we go to the beach, then it is not raining."


Is the converse of a true conditional statement always false?

No. Consider the statement "If I'm alive, then I'm not dead." That statement is true. The converse is "If I'm not dead, then I'm alive.", which is also true.


Scientist often state a problem as a?

False


What is the converse of If a number is a whole number then it is an integer?

"If a number is an integer, then it is a whole number." In math terms, the converse of p-->q is q-->p. Note that although the statement in the problem is true, the converse that I just stated is not necessarily true.


Is the converse of a true if-then statement never true?

Converses of a true if-then statement can be true sometimes. For example, you might have "If today is Friday, then tomorrow is Saturday," and "If tomorrow is Saturday, then today is Friday." Both the above conditional statement and its converse are true. However, sometimes a converse can be false, such as: "If an animal is a fish, then it can swim." and "If an animal can swim, it is a fish." The converse is not true, as some animals that can swim (such as otters) are not fish.