According to Wikipedia.
'Suppose that a curve is given as the graph of a function, y = f(x). To find the tangent line at the point p = (a, f(a)), consider another nearby point q = (a + h, f(a + h)) on the curve. The slope of the secant passing through p and q is equal to the difference quotient
As the point q approaches p, which corresponds to making h smaller and smaller, the difference quotient should approach a certain limiting value k, which is the slope of the tangent line at the point p. If k is known, the equation of the tangent line can be found in the point-slope form:'
Chat with our AI personalities
The answer will depend on the context. If the curve in question is a differentiable function then the gradient of the tangent is given by the derivative of the function. The gradient of the tangent at a given point can be evaluated by substituting the coordinate of the point and the equation of the tangent, though that point, is then given by the point-slope equation.
a tangent is a line that touches the circle at only ONE point
That line is [ y = 2 cos(2x) ].
For the equation (9x^2)/(x^2+4)
To measure the point at which two tangents intersect each other, find an equation for each tangent line and compute the intersection. The tangent is the slope of a curve at a point. Knowing that slope and the coordinates of that point, you can determine the equation of the tangent line using one of the forms of a line such as point-slope, point-point, point-intercept, etc. Do the same for the other tangent. Solve the two equations as a system of two equations in two unknowns and you will have the point of intersection.