answersLogoWhite

0


Best Answer

Determination of the Dissociation Constant and Molar Mass for a Weak Acid

Abstract: We will determine Ka and the molar mass for an unknown weak acid by using a pH meter to record the pH at intervals during the titration with sodium hydroxide. The titration curve and its first derivative will be plotted to establish the equivalence point. Introduction The strength of an acid is defined by its ability to donate a proton to a base. For many common acids, we can quantify acid strength by expressing it as the equilibrium constant for the reaction in which the acid donates a proton to the standard base, water, as shown in the equations below: HA + H2O Û H3O+ + A-, for H3CCOOH: H3CCOOH + H2O Û H3O+ + H3CCOO - The equilibrium constant for a reaction of this type is called the Acid Dissociation Constant, "Ka", for the acid HA Determination of the Dissociation Constant and Molar Mass for a Weak Acid

Abstract: We will determine Ka and the molar mass for an unknown weak acid by using a pH meter to record the pH at intervals during the titration with sodium hydroxide. The titration curve and its first derivative will be plotted to establish the equivalence point. Introduction The strength of an acid is defined by its ability to donate a proton to a base. For many common acids, we can quantify acid strength by expressing it as the equilibrium constant for the reaction in which the acid donates a proton to the standard base, water, as shown in the equations below: HA + H2O Û H3O+ + A-, for H3CCOOH: H3CCOOH + H2O Û H3O+ + H3CCOO - The equilibrium constant for a reaction of this type is called the Acid Dissociation Constant, "Ka", for the acid HA Determination of the Dissociation Constant and Molar Mass for a Weak Acid

Abstract: We will determine Ka and the molar mass for an unknown weak acid by using a pH meter to record the pH at intervals during the titration with sodium hydroxide. The titration curve and its first derivative will be plotted to establish the equivalence point. Introduction The strength of an acid is defined by its ability to donate a proton to a base. For many common acids, we can quantify acid strength by expressing it as the equilibrium constant for the reaction in which the acid donates a proton to the standard base, water, as shown in the equations below: HA + H2O Û H3O+ + A-, for H3CCOOH: H3CCOOH + H2O Û H3O+ + H3CCOO - The equilibrium constant for a reaction of this type is called the Acid Dissociation Constant, "Ka", for the acid HA

User Avatar

Wiki User

16y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How do you calculate a dissociation constant?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Factors affecting dissociation constant of acid?

The dissociation constant of an acid is affected by factors such as temperature, solvent, and ionic strength of the solution. Increasing temperature generally leads to higher dissociation constants, while changes in solvent polarity can also impact the dissociation constant. Additionally, the presence of other ions in the solution can affect the dissociation constant by influencing the equilibrium position of the acid dissociation reaction.


The acid dissociation constant for an acid dissolved in water is equal to?

The acid dissociation constant (Ka) for an acid dissolved in water is equal to the ratio of the concentration of the products (H+ and the conjugate base) over the concentration of the reactant (the acid). It represents the extent of dissociation of the acid in water.


What is the acid dissociation constant for an acid at equilibrium HX - H X-?

The dissociation constant is:k = [H][X]/[HX]


What does the negative sign in the dissociation constant mean?

equilibrium constant


What is the dissociation constant k of pure water?

The dissociation constant (Kw) of pure water is approximately 1 x 10^-14 at 25°C. This value represents the equilibrium constant for the autoionization of water into H+ and OH- ions.


The acid dissociation constant for an acid dissolved in water is equal to the?

The acid dissociation constant (Ka) for an acid dissolved in water is the equilibrium constant for the dissociation reaction of the acid into its ion components in water. It represents the extent of the acid's ionization in water.


What is an acid dissociation constant?

The acid dissociation constant (Ka) is a measure of how well an acid donates its hydrogen ions in a solution. It is the equilibrium constant for the dissociation of an acid in water into its ions. A high Ka value indicates a strong acid, while a low Ka value indicates a weak acid.


Calculate the freezing point what solutions assuming complete dissociation?

The freezing point of a solution can be calculated using the formula: ΔTf = i * Kf * m, where ΔTf is the freezing point depression, i is the Van't Hoff factor (for complete dissociation i = number of ions after dissociation), Kf is the cryoscopic constant, and m is the molality of the solution.


Which acid has the greatest acid dissociation constant?

Hydrochloric acid (HCl) has the greatest acid dissociation constant (Ka) among common acids.


What does the abbreviation Ka represent?

Acid dissociation constant


What dictates how electrolytic an electrolyte is in solution?

This is the dissociation constant.


The abbreviation Ka represents?

acid dissociation constant