Assuming constant acceleration:
distance = v(0) t + (1/2) a t squared
Where v(0) is the initial velocity.
no, you need to know its initial velocity to determine this; if initial velocity is zero then distance is 1/2 acceleration x time squared
v2 - u2 = 2as so that a = (v2 - u2)/2s where u = initial velocity v = final velocity s = distance a = acceleration
There are 3 formula 1. Final velocity = starting velocity + (acceleration)(time) 2. Final velocity^2 = starting velocity^2 + 2(acceleration)(distance) 3. Distance = (starting velocity)(time) + 1/2(acceleration)(time^2) Use whichever you can use.
There is not enough information to answer the question. The answer depends onis the object travelling at constant velocity?is the acceleration constant?If it is an object travelling with constant acceleration, which three of the following four variables are knows: initaial velocity, final velocity, acceleration and time.
Because acceleration is the rate of change of velocity: it is a measure of how quickly velocity is changing.
To find the distance traveled by an object with a given acceleration and initial velocity, you can use the formula: distance (initial velocity time) (0.5 acceleration time2). This formula takes into account the initial velocity, acceleration, and time the object has been moving to calculate the total distance traveled.
To determine velocity using acceleration and distance, you can use the equation: velocity square root of (2 acceleration distance). This formula takes into account the acceleration of the object and the distance it has traveled to calculate its velocity.
To determine velocity using acceleration and distance, you can use the equation: velocity square root of (2 acceleration distance). This formula takes into account the acceleration of the object and the distance it has traveled to calculate its velocity.
To determine the distance traveled by an object using its velocity and acceleration, you can use the equation: distance initial velocity time 0.5 acceleration time2. This formula takes into account the initial velocity of the object, the time it has been traveling, and the acceleration it is experiencing. By plugging in these values, you can calculate the distance traveled by the object.
The distance traveled would depend on the spacecraft's speed and the escape velocity of the planet. The formula to calculate the distance traveled with constant acceleration is D = (1/2)at^2, where D is distance, a is acceleration, and t is time. By plugging in the values, you can find the distance traveled.
In the kinematic equations for distance, the relationship between initial velocity, acceleration, and time is that the distance traveled is determined by the initial velocity, the acceleration, and the time taken to travel that distance. The equations show how these factors interact to calculate the distance an object moves.
Distance traveled can be calculated using the formula: distance = 0.5 * acceleration * time^2, where acceleration = force / mass. First, calculate acceleration by dividing the force by the mass, then plug the acceleration value into the formula along with the time to find the distance traveled.
Acceleration= Distance/time (distance divided by time) That's the dumbest answer I've ever heard.. Acceleration = Final Velocity - Initial Velocity/Time Velocity = Displacement/Time So you can't calculate acceleration from distance and time, you can only do velocity.
The kinematics equation for distance is: distance initial velocity time 0.5 acceleration time2. This equation is used to calculate the displacement of an object in motion by plugging in the values of initial velocity, time, and acceleration to find the total distance traveled by the object.
The distance traveled can be calculated using an accelerometer by integrating the acceleration data twice. This involves first integrating the acceleration data to get velocity, and then integrating the velocity data to get the distance traveled.
To calculate the distance traveled by an object, multiply its velocity by the time it has been in motion. This formula is distance velocity x time.
The distance traveled by the body can be calculated using the equation s = (1/2)at^2, where s is the distance, a is the acceleration, and t is the time taken to reach velocity v from rest.