Unfortunately there is no formula to factor any number into its respective primes.
However for given any number x
Its prime factorization would be represented by:
x = p1ap2bp3c .... p(n-1)A PnB
for
p1 = 1
p2 = 2
p3 = 3
p4 = 5
p5 = 7
.
.
.
p(n-1) = Second largest prime factor of x
pn = Largest prime factor of x
where a, b, c, and A and B are the degrees of each specific prime.
In practice the prime factorization is done by direct search factorization a.k.a trial and error.
There are several algorithms designed to assist mathematicians with this process.
When all the factors are prime numbers, that's a prime factorization.
a prime factorization tree
397 is a prime number, therefore prime factorization of 397 = 397.
The prime factorization of the number 26 is: 2 x 13
Prime factorization of the number 54 is 2 x 33.
The prime number is the prime factorization. For example, the prime factorization of the prime number 3 is 3. Get it?
53 is a prime number so there is no relevant prime factorization for it.
The only number with that prime factorization has to be 48.
91 cannot be in the prime factorization of any number because it is not a prime number itself.
Yes. Any prime number greater than 100 has only itself in its prime factorization. Examples: The prime factorization of 101 is 101. The prime factorization of 109 is 109. The prime factorization of 127 is 127. The prime factorization of 311 is 311. The prime factorization of 691 is 691.
When all the factors are prime numbers, that's a prime factorization.
421 is a prime number so it does not have prime factorization.
19 is a prime number, so it has no prime factorization.
Since 89 is a prime number, the prime factorization of the number is simply 89.
That's the prime factorization of 945.
23 is a prime number and does not require factorization.
a prime factorization tree