That is because - for example - some calculations are easier in polar coordinates, and some are easier in rectangular coordinates. For example, complex numbers are easier to add and subtract in rectangular coordinates, and easier to multiply and divide in polar coordinates.
Divide the vectors into horizontal and vertical components (or components in three dimensions). Add the components together for the different vectors. Convert the resultant vector back to polar coordinates, if need be. Note: Most scientific calculators have a special function to convert from polar coordinates (distance and angle) to rectangular coordinates (x and y coordinates), and back. If your calculator has such a function, using it will save you a lot of work.
Complex quantities are points on a coordinate system; the horizontal axis is called the real numbers, the vertical axis, the imaginary numbers.The point that represents a complex number can be expressed:a) In rectangular coordinates, by specifying both coordinates, for example, 5 + 3ib) In polar coordinates, you specify a distance from the origin, and an angle, for example, 10 (angle symbol) 30 degrees.It turns out that addition and subtraction are easier with rectangular coordinates, whereas multiplication, division, and therefore also powers and roots, are easier with polar coordinates.Complex quantities are points on a coordinate system; the horizontal axis is called the real numbers, the vertical axis, the imaginary numbers.The point that represents a complex number can be expressed:a) In rectangular coordinates, by specifying both coordinates, for example, 5 + 3ib) In polar coordinates, you specify a distance from the origin, and an angle, for example, 10 (angle symbol) 30 degrees.It turns out that addition and subtraction are easier with rectangular coordinates, whereas multiplication, division, and therefore also powers and roots, are easier with polar coordinates.Complex quantities are points on a coordinate system; the horizontal axis is called the real numbers, the vertical axis, the imaginary numbers.The point that represents a complex number can be expressed:a) In rectangular coordinates, by specifying both coordinates, for example, 5 + 3ib) In polar coordinates, you specify a distance from the origin, and an angle, for example, 10 (angle symbol) 30 degrees.It turns out that addition and subtraction are easier with rectangular coordinates, whereas multiplication, division, and therefore also powers and roots, are easier with polar coordinates.Complex quantities are points on a coordinate system; the horizontal axis is called the real numbers, the vertical axis, the imaginary numbers.The point that represents a complex number can be expressed:a) In rectangular coordinates, by specifying both coordinates, for example, 5 + 3ib) In polar coordinates, you specify a distance from the origin, and an angle, for example, 10 (angle symbol) 30 degrees.It turns out that addition and subtraction are easier with rectangular coordinates, whereas multiplication, division, and therefore also powers and roots, are easier with polar coordinates.
absolute relative and polar coordinates definition
Here is how to solve this. Decide on a direction for each vector. Use your scientific calculator to do a polar-to-rectangular conversion - i.e., separate each vector in horizontal and vertical components. (Check your calculator's manual on how to carry out a polar-to-rectangular conversion.) Add the vectors by components. Finally, convert back to polar (rectangular-to-polar conversion, on your scientific calculator).
(-4,0)
(-6,6)
If the polar coordinates of a complex number are (r,a) where r is the distance from the origin and a the angle made with the x axis, then the cartesian coordinates of the point are: x = r*cos(a) and y = r*sin(a)
That is because - for example - some calculations are easier in polar coordinates, and some are easier in rectangular coordinates. For example, complex numbers are easier to add and subtract in rectangular coordinates, and easier to multiply and divide in polar coordinates.
The Pol function converts rectangular coordinates to polar coordinates
(sqrt2, 315)
(-3,-3)
Divide the vectors into horizontal and vertical components (or components in three dimensions). Add the components together for the different vectors. Convert the resultant vector back to polar coordinates, if need be. Note: Most scientific calculators have a special function to convert from polar coordinates (distance and angle) to rectangular coordinates (x and y coordinates), and back. If your calculator has such a function, using it will save you a lot of work.
r=sqrt(x2+y2) and θ=arctan(y/x) are useful formulae here. if x=5 and y=-12, r=13 and θ=arctan(-12/5)=-1.18 rectangular: (5,-12) ; polar: (13,-1.18)
You can use a scientific calculator to convert from polar coordinates (length and direction) to rectangular coordinates (x-coordinate and y-coordinate). Most calculators have such a function directly; it is much easier to use this, than to use the special trigonometric formulae. Then, add the x- and y-components separate. You may want to convert the end-result back to polar coordinates - once again, use the special functions on your calculator, in this case, rectangular-to-polar conversion.
Some of them but not all. For example, uniqueness. The rectangular coordinates (x, y) represent a different point if either x or y is changed. This is also true for polar coordinate (r, a) but only if r > 0. For r = 0 the coordinates represent the same point, whatever a is. Thus (x, y) has a 1-to-1 mapping onto the plane but the polar coordinates don't.
(5, pi) or in other words, (5, 180)