To derive the Navier-Stokes equations in spherical coordinates, we start with the general form of the Navier-Stokes equations in Cartesian coordinates and apply the transformation rules for spherical coordinates ((r, \theta, \phi)). This involves expressing the velocity field, pressure, and viscous terms in terms of the spherical coordinate components. The continuity equation is also transformed accordingly to account for the divergence in spherical coordinates. Finally, we reorganize the resulting equations to isolate terms and ensure they reflect the physical properties of fluid motion in a spherical geometry.
it is easy you can see any textbook........
Y.-N Kim has written: 'Calculation of helicopter rotor blade/vortex interaction by Navier-Stokes procedures' -- subject(s): Rotors (Helicopters), Navier-Stokes equations
The answer depends on the nature of the equation. Mathematicians are still not able to solve the Navier-Stokes equations, for example. In fact there is a million dollar (US) prize if you can figure out a general solution. The equations are not simply mathematical contrivances to create a challenge: they deal with fluid flow and are used for studying the flow of liquids inside a pipe, or air-flow over a plane's wings and so on.
Neglecting the non-linear term in the Navier-Stokes equations simplifies the analysis, often leading to linear models that are easier to solve and analyze. This approximation is typically valid in conditions where the flow is dominated by viscous forces, such as in low Reynolds number flows. However, this simplification may not accurately capture the dynamics of turbulent or high-speed flows, where non-linear interactions play a crucial role. Thus, the decision to neglect non-linear terms depends on the specific flow regime being studied.
Differential equations are fundamental in aircraft design as they model various physical phenomena, such as fluid dynamics, structural integrity, and control systems. For instance, the Navier-Stokes equations, which are a set of partial differential equations, describe the airflow around the aircraft, helping engineers optimize aerodynamic shapes. Additionally, differential equations govern the dynamics of flight, allowing for the analysis and design of control systems that ensure stability and responsiveness. Overall, they provide critical insights that aid in predicting performance and enhancing safety in aircraft design.
http://en.wikipedia.org/wiki/Navier-Stokes_equations Please go to this page.
Dochan Kwak has written: 'Computation of viscous incompressible flows' -- subject(s): Computational fluid dynamics, Space shuttle main engine, Three dimensional flow, Incompressible flow, Finite difference theory, Navier-Stokes equation 'An incompressible Navier-Stokes flow solver in three-dimensional curvilinear coordinate system using primitive variables' -- subject(s): Spherical coordinates, Navier-Stokes equation
it is easy you can see any textbook........
The Navier-Strokes equation is a term in physics used to describe the motion of a fluid substance. The equation applies Newton's second law to fluid motion.
A. Arnone has written: 'A Navier-Stokes solver for cascade flows' -- subject(s): Cascade flow, Navier-Stokes equation
In fluid dynamics, the energy equation and the Navier-Stokes equations are related because the energy equation describes how energy is transferred within a fluid, while the Navier-Stokes equations govern the motion of the fluid. The energy equation accounts for the effects of viscosity and heat transfer on the fluid flow, which are also considered in the Navier-Stokes equations. Both equations are essential for understanding and predicting the behavior of fluids in various situations.
The Poiseuille equation is derived from the Navier-Stokes equation for incompressible fluid flow in a cylindrical pipe, assuming laminar flow and steady state conditions. By applying assumptions of no-slip boundary conditions and conservation of mass and momentum, the equation simplifies to describe the flow rate in terms of viscosity, pressure gradient, and geometry of the pipe.
Moshe Israeli has written: 'Marching iterative methods for the parabolized and thin layer Navier-Stokes equations' -- subject(s): Iterative solution, Navier-Stokes equation
Yuichi Matsuo has written: 'Navier-Stokes simulations around a propfan using higher-order upwind schemes' -- subject(s): Prop-fans, Navier-Stokes equation
Nondimensionalization of equations are generally done to obtain the characteristic property of the system. Non Dimensionalization of incompressible navier stokes gives an equation in terms of Reynolds number hence simplifying the problem. Cheers Prasanth P
Peter M. Hartwich has written: 'High resolution upwind schemes for the three-dimensional, incompressible Navier-Stokes equations' -- subject(s): Navier-Stokes equation, Upwind schemes
Klaus A. Hoffmann has written: 'Comparative analysis of Navier-Stokes codes - accuracy and efficiency' -- subject(s): Navier-Stokes equation 'Computational fluid dynamics for engineers' -- subject(s): Fluid dynamics, Numerical analysis