s = u + at
s = displacement
u = initial velocity
a = acceleration
t = time
rearrange to give
u = s - at
and sub in values
Chat with our AI personalities
no, you need to know its initial velocity to determine this; if initial velocity is zero then distance is 1/2 acceleration x time squared
There are several definitions. not just one. Average velocity in a direction = Average displacement (distance) in that direction/time Instantaneous velocity in a direction = derivative of displacement in that direction with respect to time Average velocity in a direction = Initial velocity in that direction + Average acceleration in that direction * time Instantaneous velocity in a direction = Definite integral of acceleration in that direction with respect to time, with initial velocity at t = 0 Then there are others in which time is eliminated.
vf2 = vi2 + 2ad, where vf is final velocity, vi is initial velocity, a is acceleration, and d is displacement. Solve for a.vf = vi + at, where t is time time. Solve for a.
the formula for finding acceleration is final velocity, minus initial velocity, all over time. So if you have the acceleration and initial speed, which is equal to the initial velocity, you must also have time in order to find the final velocity. Once you have the time, you multiply it by the acceleration. That product gives you the difference of the final velocity and initial velocity, so then you just add the initial velocity to the product to find the final velocity.
You use the information you're given, along with the equations and formulas you know that relate distance, time, speed, and acceleration, to calculate the number you're asked to find. And here's a tip: Chances are that the initial acceleration, the final acceleration, and the acceleration all along the way, are all the same number.