no, you need to know its initial velocity to determine this; if initial velocity is zero then distance is 1/2 acceleration x time squared
There are several definitions. not just one. Average velocity in a direction = Average displacement (distance) in that direction/time Instantaneous velocity in a direction = derivative of displacement in that direction with respect to time Average velocity in a direction = Initial velocity in that direction + Average acceleration in that direction * time Instantaneous velocity in a direction = Definite integral of acceleration in that direction with respect to time, with initial velocity at t = 0 Then there are others in which time is eliminated.
vf2 = vi2 + 2ad, where vf is final velocity, vi is initial velocity, a is acceleration, and d is displacement. Solve for a.vf = vi + at, where t is time time. Solve for a.
the formula for finding acceleration is final velocity, minus initial velocity, all over time. So if you have the acceleration and initial speed, which is equal to the initial velocity, you must also have time in order to find the final velocity. Once you have the time, you multiply it by the acceleration. That product gives you the difference of the final velocity and initial velocity, so then you just add the initial velocity to the product to find the final velocity.
You use the information you're given, along with the equations and formulas you know that relate distance, time, speed, and acceleration, to calculate the number you're asked to find. And here's a tip: Chances are that the initial acceleration, the final acceleration, and the acceleration all along the way, are all the same number.
You can use the equation: Displacement = (final velocity squared - initial velocity squared) / (2 * acceleration). Plug in the values of final velocity, initial velocity, and acceleration to calculate the displacement.
If s = displacement, u = initial velocity, a = acceleration, t = time. Then s = ut + 1/2at2 Be careful to keep units consistent
You can calculate displacement using the equation: displacement = initial velocity x time + 0.5 x acceleration x time^2. Given the initial velocity, time, and acceleration, you can find the displacement even if the final velocity is not given.
Lateral displacement can be derived using the formula: lateral displacement = initial velocity * time + 0.5 * acceleration * time^2. This formula takes into account the initial velocity, acceleration, and time taken for the object to undergo lateral displacement.
To find the time without knowing the final velocity, you need information about the initial velocity, acceleration, and displacement. You can use the kinematic equation: displacement = (initial velocity * time) + (0.5 * acceleration * time^2) to solve for time.
The second equation of motion describes the relationship between an object's final velocity and initial velocity, acceleration, and displacement. It is typically written as v^2 = u^2 + 2as, where v is final velocity, u is initial velocity, a is acceleration, and s is displacement. The dimensions of the second equation of motion are [L/T] for velocity, [L/T] for acceleration, and [L] for displacement.
The equations of motion involving uniform acceleration are: v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, t is the time taken. s = ut + (1/2)at^2, where s is the displacement. v^2 = u^2 + 2as, where s is the displacement. These equations describe the relationships between initial velocity, final velocity, acceleration, displacement, and time during motion with uniform acceleration.
s = ut + 1/2 at^2 s=displacement u= initial velocity t=time a=acceleration
use a uniform acceleration equation, Δx = ½ (Vi + Vf) Δt where displacement = 1/2 (initial velocity + final velocity) time displacement = 1/2 (59 m/s + 78 m/s) * 12s displacement = 822 m
Acceleration is calculated by dividing the change in velocity by the time taken for that change to occur. The formula for acceleration is: acceleration = (final velocity - initial velocity) / time.
The three equations of motion are: ( v = u + at ) (relates initial velocity, acceleration, and time) ( s = ut + \frac{1}{2}at^2 ) (relates initial velocity, acceleration, and displacement) ( v^2 = u^2 + 2as ) (relates initial and final velocity, acceleration, and displacement) The first equation, ( v = u + at ), describes the relationship between velocity and time.
no, you need to know its initial velocity to determine this; if initial velocity is zero then distance is 1/2 acceleration x time squared