answersLogoWhite

0

Kinematics.

Final velocity squared = initial velocity squared + 2(gravitational acceleration)(displacement)

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Natural Sciences

How do you find the initial velocity just with the accelaration final velocity and time?

You can use the equation: final velocity = initial velocity + acceleration * time. Rearrange the equation to solve for initial velocity: initial velocity = final velocity - acceleration * time. Simply substitute the given values for final velocity, acceleration, and time into the equation to find the initial velocity.


If an object is accelerating what equation relates the acceleration of that object the initial velocity and the final velocity and time?

The equation that relates acceleration (a), initial velocity (u), final velocity (v), and time (t) for an object under constant acceleration is: v = u + at.


Is acceleration equal to the initial velocity minus the final velocity and then divided by time?

No, acceleration is calculated as the change in velocity divided by time. It is the rate at which the velocity of an object changes. Mathematically, acceleration is represented as (final velocity - initial velocity) / time.


Which is greater in positive acceleration initial or final velocity?

In positive acceleration, the final velocity is greater than the initial velocity. This is because acceleration is the rate of change of velocity, so as time progresses, the velocity increases due to the acceleration.


How do you find final speed if acceleration time and beginning velocity is given?

You can find the final speed by using the formula: final speed = initial velocity + (acceleration * time). Plug in the given values for initial velocity, acceleration, and time into the formula to calculate the final speed.

Related Questions

How do you get the displacement if the if the final velocity is not given?

You can calculate displacement using the equation: displacement = initial velocity x time + 0.5 x acceleration x time^2. Given the initial velocity, time, and acceleration, you can find the displacement even if the final velocity is not given.


How do you get the time without final velocity?

To find the time without knowing the final velocity, you need information about the initial velocity, acceleration, and displacement. You can use the kinematic equation: displacement = (initial velocity * time) + (0.5 * acceleration * time^2) to solve for time.


What is the final velocity of an object (v2) when the initial velocity (v0), acceleration (a), and displacement (d) are known and can be calculated using the equation v2 v02 2ad?

The final velocity of an object (v2) can be calculated using the equation v2 v02 2ad, where v0 is the initial velocity, a is the acceleration, and d is the displacement.


What is dimension of second equation of motion?

The second equation of motion describes the relationship between an object's final velocity and initial velocity, acceleration, and displacement. It is typically written as v^2 = u^2 + 2as, where v is final velocity, u is initial velocity, a is acceleration, and s is displacement. The dimensions of the second equation of motion are [L/T] for velocity, [L/T] for acceleration, and [L] for displacement.


When calculating acceleration to find the change in velocity you subtract the what velocity from the final velocity?

When calculating acceleration to find the change in velocity, you subtract the initial velocity from the final velocity. The formula for acceleration is: acceleration = (final velocity - initial velocity) / time.


What are the equations of motion involving uniform acceleration?

The equations of motion involving uniform acceleration are: v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, t is the time taken. s = ut + (1/2)at^2, where s is the displacement. v^2 = u^2 + 2as, where s is the displacement. These equations describe the relationships between initial velocity, final velocity, acceleration, displacement, and time during motion with uniform acceleration.


To find acceleration you subtract what?

To find acceleration, you subtract the initial velocity from the final velocity and then divide by the time taken to achieve the change in velocity. The formula for acceleration is (final velocity - initial velocity) / time.


What information do you need in order to find a object's acceleration?

To find an object's acceleration, you need its initial velocity, final velocity, and the time it takes to change from the initial velocity to the final velocity. The formula for acceleration is (final velocity - initial velocity) / time elapsed.


What is the formula for calculating final velocity when you know the initial speed and the acceleration?

the formula for finding acceleration is final velocity, minus initial velocity, all over time. So if you have the acceleration and initial speed, which is equal to the initial velocity, you must also have time in order to find the final velocity. Once you have the time, you multiply it by the acceleration. That product gives you the difference of the final velocity and initial velocity, so then you just add the initial velocity to the product to find the final velocity.


What is the formula for calculating the acceleration of an object when given the initial velocity, final velocity, and time elapsed?

The formula for calculating acceleration is: acceleration (final velocity - initial velocity) / time elapsed.


What is the Formula in Final Velocity?

Final velocity = (Initial velocity) + (time)(acceleration)


What would be true of the values for initial velocity and final velocity if the acceleration were zero?

If the acceleration is zero, then the initial velocity and final velocity would be equal. This is because there is no change in velocity over time when acceleration is zero.