answersLogoWhite

0

If the set is finite you count the number of distinct elements in it.

If the set has infinitely many elements, and you can find a one-to-one mapping between these elements and the natural numbers, then its cardinality is Aleph-null. Incidentally, the cardinality of rational numbers is also Aleph-null.

If you can map its elements to the set of real numbers, and if the continuum hypothesis is true then the cardinality of the set is the next transfinite number, Aleph-one. Unfortunately, if the Zermelo-Fraenkel set theory is consistent then neither the continuum hypothesis nor its negation can be proven. [It is not that nobody has proved it, but worse: as Godel proved, in any consistent and not-trivial mathematical theory, there are statements that cannot be proved to be true or false.]

User Avatar

Wiki User

11y ago

Still curious? Ask our experts.

Chat with our AI personalities

EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
FranFran
I've made my fair share of mistakes, and if I can help you avoid a few, I'd sure like to try.
Chat with Fran
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin

Add your answer:

Earn +20 pts
Q: How do you determine the cardinal of a given set?
Write your answer...
Submit
Still have questions?
magnify glass
imp