The degree of a polynomial is the highest power that appears in the polynomial. For more than one variable, you must add the powers for each variable, for example, a3b2 is of degree 3 + 2 = 5.
To determine which polynomial is equivalent to a given expression, you'll need to provide the specific expression you're referring to. Please share the expression, and I'll help you find the equivalent polynomial.
To determine which binomial is a factor of a given polynomial, you can apply the Factor Theorem. According to this theorem, if you substitute a value ( c ) into the polynomial and it equals zero, then ( (x - c) ) is a factor. Alternatively, you can perform polynomial long division or synthetic division with the given binomials to see if any of them divides the polynomial without a remainder. If you provide the specific polynomial and the binomials you're considering, I can assist further.
No. A polynomial can have as many degrees as you like.
To determine which linear expression is a factor of a given polynomial function, you typically need to perform polynomial division or use the Factor Theorem. If you can substitute a root of the polynomial into the linear expression and obtain a value of zero, then that linear expression is indeed a factor. Alternatively, if you have the polynomial's roots, any linear expression of the form ( (x - r) ), where ( r ) is a root, will be a factor. Please provide the specific polynomial function for a more accurate response.
Do mean find the polynomial given its roots ? If so the answer is (x -r1)(x-r2)...(x-rn) where r1,r2,.. rn is the given list roots.
Yes, a polynomial time verifier can efficiently determine the validity of a given solution in a computational problem.
Since no polynomial was given, no answer will be given.
No. A polynomial can have as many degrees as you like.
An example of a polynomial with 3 terms is 3x3 + 4x + 20, because there are 3 different degrees of x in the polynomial.
Evaluating a polynomial is finding the value of the polynomial for a given value of the variable, usually denoted by x. Solving a polynomial equation is finding the value of the variable, x, for which the polynomial equation is true.
Do mean find the polynomial given its roots ? If so the answer is (x -r1)(x-r2)...(x-rn) where r1,r2,.. rn is the given list roots.
"Difference" implies subtraction. Example: The difference of 8 and 5 is 3 because 8 - 5 = 3. To determine if a polynomial is the difference you probably have to subtract one polynomial from another and check if your answer matches a given polynomial. To clarify the above, the polynomial should be able to be factorised into two distinct factors. For example x^2 - y^2 = (x + y)(x - y). This is the difference of two squares.
An expression that completely divides a given polynomial without leaving a remainder is called a factor of the polynomial. This means that when the polynomial is divided by the factor, the result is another polynomial with no remainder. Factors of a polynomial can be found by using methods such as long division, synthetic division, or factoring techniques like grouping, GCF (greatest common factor), or special patterns.
If all of its terms are of the form ax^b where a is any constant and b is a non-negative integer then it is a polynomial. If not, it is not.
The given polynomial does not have factors with rational coefficients.
A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.A polynomial, of degree n, in standard form is:anxn + an-1xn-1 + ... + a1x+ a0 = 0 where n is an integer and the ai are constants.The answer about how to rewrite a polynomial depends on the form that it is given in.
you can say that it is polynomial if that have a exponent