3x^(2) +9x - 2x -6
Collect 'like terms'.
Hence
3x^(2) + 7x - 6
Next write down all the factors of '3' and '6'
Hence
3 ; 1' & 3'
6 ; 1,6 ; 2,3.
From these pairs of number we select a pair from each coefficient, that add/multiply to '7' .
Hence
(3' x 3 ) & (1' x 2) ; NB 'dashes' (') to indicate source of numbers.
Write up brackets
(3x 2)(x 3) -2)(x + 3)
Next we notice that the '6' is negative, so the two signs are different (+/-) The '7x' is positive , so the larger number takes the positive sign .
Hence
(3x - 2)(x + 3)
(2x-3)(x-1)
(x - 2)(2x + 7)
(2x - 9)(2x - 9) or (2x - 9)2
2x(2x - 1)
(2x - 1)(2x + 3)
(2x - 3)(x + 2)
(2x-3)(x-1)
(x - 1)(2x - 9)
(x - 2)(2x + 7)
There is no rational factorisation.
(x - 2)(2x - 3)
(2x - 9)(2x - 9) or (2x - 9)2
2x squared - 5x - 3 = (2x +1)(x -3)
2x(2x - 1)
(x - 1)(5x + 7)
(2x - 1)(5x + 8)
(4x - 3)(2x + 3)